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Abstract 

 
It is a common theoretical view that (low) birth weight is a correlate of adverse 

birth outcomes but is not on the, causal pathway to infant mortality.  On the other hand, 

the United States’ national policy for reducing infant mortality is to reduce low birth 

weight.  If the theoretical view is correct, lowering the low birth weight rate may have 

little effect on infant mortality.  The development of covariate density defined mixtures 

of logistic regression, a non-linear structural equation like model, allows a formal test of 

the casual relationship between birth weight and infant mortality.  This paper 

determines if maternal age influences birth outcomes directly, and/or indirectly 

through birth weight in four populations.  The results indicate that a) the majority of 

maternal age effects on infant mortality are direct and do not operate through birth 

weight, b) maternal age does influence the birth weight distribution, but c) the effect of 

maternal age on the birth weight distribution has little or no effect on infant mortality, 

because the birth weight specific mortality curve shifts to compensate for changes in the 

birth weight distribution.  This is consistent with the theoretical view that birth weight 

may not be causal. 

 
 
 

Introduction 
 

Several theoritions have argued that birth weight is not on the causal pathway to 

infant mortality.  For example, Mosley and Chen (Mosely and Chen 1984) in their 

influential paper concerning the proximate determinants of childhood mortality argued 

that birth weight might be an indicator of adverse conditions, but was not a cause per se.   

Wilcox (Wilcox and Russell 1990) and Wise (Wise 2003) also question whether birth 



weight is on the causal pathway to infant mortality or simply correlated with infant 

mortality.  Wilcox (Wilcox and Russell 1990; Wilcox and Russell 1983a, 1983b) and 

http://eb.niehs.gov/bwt/subcwhy.htm in particular has provided a detailed theory of 

“causality” with respect to birth weight and infant mortality and argues that for fetus’s 

undergoing “normal“ development, birth weight is not causally related to infant 

mortality.  These views differ dramatically from current national policy, which is to 

reduce infant mortality by reducing the low birth weight rate as stated in Healthy 

People 2010.  Underlying this is a large literature demonstrating a high correlation 

between birth weight and infant mortality.  However, if birth weight is not on the 

“causal” pathway to infant mortality prevention strategies that target birth weight 

might not have the intended effect of lowering infant mortality. 

Wilcox’s (Wilcox and Russell 1990; Wilcox and Russell 1983a, 1983b) and 

http://eb.niehs.gov/bwt/subcwhy.htm definition of causality with respect to birth 

weight and infant mortality is sufficiently detailed to be explicitly testable.  The basis of 

his argument is that while the birth weight distribution does shift in response to 

external covariates, the birth weight specific mortality curve also shifts horizontally by a 

similar amount in the same direction, so that there is no indirect effect due to the 

covariate on infant mortality.  In addition he argues that the same external covariates 

may have direct effects on infant mortality by increasing or decreasing the birth weight 

specific mortality curve vertically at all birth weights.  A graphical depiction of this 

argument is presented in Figure 1.  Finally Wilcox argues that this applies only to 

“normal” (versus “residual”) births identified by his semi-parametric mixture model of 

birth weight(Wilcox and Russell 1983b).   Essentially, this mixture model consists of a 

Gaussian distribution fitted to the central part of the birth weight distribution with 

“residual” distributions accounting for the heavy lower (Wilcox and Russell 1983b) and 

upper (Umbach and Wilcox 1996) tails of the birth weight distribution.  Thus the 

“residual” distribution accounts for many, but not necessarily all, low birth weight and 

macrosomic births, who are considered to be undergoing “compromised” fetal 

development.   For example, Wilcox has argued graphically that the birth weight 



distribution shifts to the left with increasing altitude (Figure 1a) but that the birth 

weight specific infant mortality shifts along with it so that there is no resultant change 

in infant mortality.  The same phenomenon occurs comparing non-smoking with 

smoking mothers accept that the birth weight specific infant mortality curve also 

increases at every birth weight as a direct effect of smoking.   A direct effect without a 

shift in the birth weight distribution is shown in Figure 1b.  On the other hand, an 

indirect effect would occur if the shift in the birth weight specific infant mortality curve 

did not correspond precisely with the shift in the birth weight distribution.  However, 

these graphical arguments have not been rigorously tested, primarily because there is 

no statistical technique that can control for both horizontal and vertical shifts in infant 

mortality and simultaneously account for “normal” versus “residual” births.   

The primary aim of this paper is to present a statistical method for rigorously 

testing Wilcox’s argument.  In particular, we propose a model that statistically 

distinguishes horizontal and vertical shifts in the birth weight specific infant mortality 

curve separately for both “normal” and “compromised” births and can test the 

hypothesis that the shifts in birth weight and birth weight specific mortality curve are 

identical.   We will examine the impact of maternal age on infant mortality, stratified by 

sex, parity and African versus European American ancestry.  As such, the results also 

represent a statistical examination of the “weathering” hypothesis (Geronimus 1992; 

Geronimus and Bound 1990). 

 
Data and Methods:   

 The data for this analysis consists of all African and European American 

singleton live births in New York State, 1985-88.   Births with missing sex, parity and 

ethnic designations, maternal ages, and birth weights are omitted from the analysis.  

Third and higher order parity births are also omitted to reduce heterogeneity in the 

multiparous strata, and since only a small proportion of women have more than three 

births.  Analyses are carried out stratified by ethnicity, sex, and parity (primiparous 



(parity =0) versus multiparous (parity = 1, 2).  The characteristics of the samples are 

presented in Table 1. 

Table 1 about here 

Gage et al. (Gage 2002);(Gage et al. 2004) defined CDDmlr (covariate density 

defined mixture of logistic regressions) in their application to birth outcomes as the joint 

density of birth weight (x) and the occurrence of death (y):  
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The mixing proportion is specified as )(itlog pπη = , which transforms the 0.0 

and 1.0 bounds on pπ  to minus and plus infinity respectively.  Birth weight specific 

infant mortality is generally considered to be U-shaped, hence the quadratic 

assumption in Eq. 4.  

Here we extend the original model in two different ways. The first extension 

includes the effects of an exogenous covariate . It is incorporated into the mixture 

submodel by defining the mixture submodel parameters as functions of , i.e. 

assuming nonlinear (2

z

z

nd degree polynomial) effects for the i subpopulation: 
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The covariate  is also employed in the mortality submodel by adding it to the logistic 

probabilities (Eq. 4), that is: 
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Second, birth weight ( ) is standardized based on the mean and variance of the 

respective subpopulation and then the resulting Z-score ( ) is used in Eq. 8 for the 

corresponding subpopulation, that is: 
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Overall, there are 27 parameters, 15 for the mixture submodel and 12 for the mortality 

submodel. Their definitions are summarized in Table 2. 

Table 2 about here 

Defining the mixture submodel parameters as functions of (Eq. 6-8) represents 

the effects of covariate on the birth weight distribution and the potential indirect 

effects of on infant mortality through birth weight. Adding covariates  to the 

mortality submodel (Eq. 9-10) represents the direct effects of that covariate (i.e. vertical 

z

z

z z



shifts) on infant mortality.  By redefining birth weight as the Z-score of birth weight in 

the mortality submodel (Eq. 9), horizontal shifts (of a magnitude equal to the shift in the 

birth weight distribution) are automatically accounted for and all other effects of birth 

weight on infant mortality are encompassed in the interaction of  (birth weight) and  

(maternal age). Thus a significant interaction term indicates the presence of an indirect 

effect of  through the birth weight distribution on infant mortality, i.e., that birth 

weight is on the causal pathway to infant mortality, at least as defined by Wilcox 

(Wilcox and Russell 1990; Wilcox and Russell 1983a, 1983b) and 

http://eb.niehs.gov/bwt/subcwhy.htm. 
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Results 

Maternal age has a strong effect on the mean birth weight of the primary 

subpopulation and the variance of the secondary subpopulation (Table 3).  In particular 

both linear and second-degree parameters of the polynomial of maternal age on 

primary subpopulation mean birth weight are significant at all parities in all 

populations examined.  Multiparous births are significantly larger than primiparous 

births particularly at maternal ages greater than 25 years (Figure 2).  On the other hand, 

maternal age effects on the secondary subpopulation mean birth weight are significant 

in only one of sixteen parameters tested (Table 3).  There are no significant differences 

in secondary mean birth weight by parity at any maternal age (Figure 2).   Maternal age 

influences the variance in birth weight of the secondary subpopulation in all eight 

populations examined (15 of 16 parameters), but only effects the variance in birth 

weight of the primary subpopulation in two of the eight populations examined.  Thus 

the most consistent effects concern the mean of birth weight in the primary 

subpopulation, and the variance in birth weight in the secondary subpopulation.  In 

general, mean primary birth weight is n-shaped with maximum mean birth weight 

between 25 and 35 years of age, while the variance of the secondary distribution 

increases with maternal age (Figure 2).   

Figure 2  



Table 3  

Maternal age has significant effects on the mixing proportion of all four 

European American cohorts, but none of the African American birth cohorts (Table 3).  

Among European American births the proportion of secondary births is significantly U-

shaped with maternal age (Figure 2c).  Multiparous European American birth cohorts 

have a significantly lower proportion of secondary births, particularly during the period 

25 to 35 years of age.  These differences with maternal age are not significant for African 

Americans, although the trends are similar.  African Americans have generally higher 

proportions of secondary births particularly during the peak childbearing years. 

The direct effects of maternal age on infant mortality occur in four of the eight 

primary subpopulations, and three of the eight secondary subpopulations (Table 3).  In 

general, infant mortality tends to decline with maternal age to a minimum before 

increasing again, although this pattern is not always significant (Figure 3 and Table 3).  

Figure 3 about here. 

Finally, maternal age has little or no statistically detectable indirect effect on 

infant mortality.  The birth weight by maternal age interaction terms are all insignificant 

with the exception of multiparous European American male secondary births (Table 3).  

Thus there are significant shifts in birth weight distributions, primarily though the 

primary subpopulation mean, but in all cases, birth weight specific infant mortality 

shifts along with the shifts in the birth weight distribution, as Wilcox argues, so that 

there is no change in overall mortality due to the shifts in the birth weight distribution, 

particularly in the primary subpopulation.  Among multiparous European American 

male secondary births, the interaction term is significant, but in this case there are no 

significant maternal age effects on the mean of the secondary subpopulation.  Thus 

there is a shift in the birth weight specific mortality curve relative to mean birth weight, 

but no shift in mean birth weight.   

Characteristic patterns of birth weight specific infant mortality at several 

maternal ages are presented in Figure 4.  Of particular interest is the “pediatric 

paradox” with respect to maternal age in Figure 4c.  Infants of women in their prime 



childbearing years have higher infant mortality at low birth weights, but lower 

mortality at “normal” birth weights compared to infants of older women and younger 

women.  Whether younger and/or older women display this effect varies by parity and 

race with the effect being stronger for primiparous births to young women and births to 

older African American women. 

Figure 4 about here  

Finally, a decomposition of maternal age effects on mortality based on the full 

model is presented in Table 4.   This includes the impact of “trends” as well as, the 

statistically significant aspects of the model.  Nevertheless, they are in close agreement 

with the significant aspects of the model.  Typically, more than 70% of the impact of 

maternal age on infant mortality is due to direct effects.  The exception is primiparous 

African American males where the direct effect accounts for only about 34% of the total.  

Comparison of primiparous versus multiparous results suggests that secondary direct 

effects might be more important in primiparious births, and primary direct effects 

might be more important in multiparous births.  On the other hand, the indirect effects, 

that is the impact of maternal age on infant mortality mediated through birth weight, 

are small.  The primary indirect effects are all very small, less then 2%.  The trends in 

the secondary indirect effects are usually less then 30%, but reach, as high  as, 64% in 

the case of African American primiparous males.   There is some suggestion that 

secondary indirect effects may be larger in primiparous then multiparous births.  

However, with the exception of multiparous European American males, none of the 

indirect effects are statistically significant.  Interestingly, there is little effect of the 

mixing proportion on total mortality, generally less then 0.5%. despite significant effects 

of maternal age on the mixing proportion and significant differences in mortality 

between primary and secondary births.  The various effects of the mixing proportion 

appear to cancel out at the level of total infant mortality.  

Table 4 about here 

Discussion 



The primary aim of this paper is to present a statistical methodology capable of 

testing Wilcox’s definition of causality in the context of infant mortality and present a 

preliminary application using maternal age.   One possible limitation of our approach is 

that the parametric mixture model used here is not mathematically identical to Wilcox’s 

semi-parametric model.  However, like Wilcox, Fryer et al, (Fryer, Hunt and Simons 

1984) and Gage and others (Gage and Therriault 1998) have argued that the primary 

subpopulation represents births undergoing “normal” fetal development, while the 

secondary subpopulation represents births “compromised” during fetal development.  

In both parametric and semi-parametric models, this conclusion is based simply on the 

fact that the secondary (residual) subpopulation accounts for the majority of births who 

have traditionally been considered “compromised” on the basis of birth weight, i.e. low 

birth weight and macrosomic births.  On the other hand, Wilcox’s models, because they 

depend upon binned birth weight data (as opposed to individual data) are not easily 

generalizable to include mortality submodels.  Thus despite minor differences, the 

primary subpopulation, as presented above, is a reasonable and possibly better 

operational definition of Wilcox’s concept of “normal” births.   Thus the model is 

capable of testing Wilcox’s definition of causality. 

Based on Wilcox’s definition of “causal” and our preliminary application to 

maternal age, it is clear that birth weight is not on the causal pathway to infant 

mortality.  Maternal age does significantly influence the birth weight distribution 

among “normal” births, but these changes are compensated for by shifts in birth weight 

specific infant mortality so that “normal” infant mortality is unaffected.   Since the null 

hypothesis of the test is complete compensation, which is easily falsified, this is a strong 

test of Wilcox’s hypothesis. 

Wilcox did not include “compromised” births in his discussion of birth weight 

and causation.  The preliminary results presented above, however, suggest that there 

are few indirect effects of maternal age on infant mortality among “compromised” 

births, as well as “normal” births.  European American male secondary births displayed 

the only significant result out of 16 total tests.  It may be that this is simply a Type 1 



error due to multiple tests.  Additional analysis will be necessary to understand the true 

significance of this result, although the maternal age effect reported above is very small.  

Regardless of whether this is a spurious result, however, it does raise the theoretical 

possibility of types of causality, which Wilcox has not considered.  Here, the birth 

weight distribution remains fixed but birth weight specific infant mortality shifts with 

maternal age.   

Further Wilcox’s theory applies to “normal” births, however, dividing births into 

“normal” and “compromised” categories implies that there is another way that 

maternal age could indirectly effect infant mortality, that is, maternal age could 

influence the proportion of “normal” to “compromised” births.  Since these 

subpopulations of births differ significantly with respect to their birth weight 

distributions, and birth weight specific infant mortality (Gage 2002; Gage et al. 2004) 

maternal age could operate “indirectly” on infant mortality through this mechanism.  

The results above indicate that maternal age effects on the mixing component are 

significant for European Americans, although not for African Americans (Table 3).  The 

lack of significant results could be due to low statistical power in the case of the African 

American samples, which are relatively small (Table 1).  Analyses with larger samples 

will be necessary to determine if maternal age influences the proportion of “normal” to 

“compromised” births differently in African versus European Americans.   On the other 

hand, the decomposition of the preliminary results presented above suggest that in all 

cases the indirect effects of maternal age operating through the mixing proportion tend 

to cancel out and are very small (Table 4).    

Finally, while we have failed to falsify Wilcox’s argument that birth weight is not 

“causal” with respect to infant mortality, this does not mean that this hypothesis is 

correct.  All that is necessary to falsify the argument is that some covariate have an 

indirect effect among “normal” births and we have only examined one covariate, 

maternal age.  Other relevant covariates will need to be explored.  We expect that some 

might influence mortality indirectly through birth weight while others like maternal age 

do not.  



These preliminary results fail to support Geronimus’ weathering hypothesis.  

This theory states that maternal stores decline with maternal age and parity increasing 

the low birth weight rate and resulting in higher infant mortality.  The process is 

hypothesized to occur faster among African American women compared to European 

American women, thus in part explaining racial disparities in infant 

mortality(Geronimus 1992; Geronimus and Bound 1990).  The theory assumes that birth 

weight is on the “causal” pathway to infant mortality.  However, we do not find strong 

statistical evidence that birth weight is on the “causal” pathway to infant mortality, 

even if we consider effects on “normal” and “compromised” births and not just the 

effects on the  “normal” subpopulation as argued by Wilcox.  Failure to support 

Geronimus’ hypothesis could result from lack of power due to the smaller African 

American sample.  Conclusive evidence, and rigorous comparisons of African and 

European American birth cohorts, will need to await the analysis of larger African 

American samples.  However, the decomposition of maternal age effects (Table 4), 

which is based on the full model and not just the significant trends, indicates that the 

direct effects of maternal age are larger then all but one of the indirect or mixing 

proportion effects.  Thus our analysis provides little support for the weathering 

hypothesis per se.    

The US national policy, which is to lower the low birth weight rate in an effort to 

lower infant mortality, makes the most sense if birth weight is on the “causal” pathway 

to infant mortality.  For example, a national policy might be devised, which could 

influence the distribution of maternal ages in order to improve birth weight with the 

intention of improving infant mortality.  The results presented above suggest that such 

a policy would influence birth weight, particularly among “normal” births, but would 

have little or no effect on infant mortality.   Choosing to influence the birth weight 

distribution by intervening with respect to maternal age on the basis of the proportion 

of “normal” versus “compromised” births will influence infant mortality slightly,  

particularly among European American populations, but may not impact infant 

mortality among African American birth cohorts.  Finally the direct effects of maternal 



age on infant mortality account for the vast majority of total maternal age effects.  

Clearly it would be more effective to devise interventions based on the direct effects of 

maternal age on infant mortality. 

 

Conclusions 

Covariate Density Defined mixtures of logistic regression is an important 

methodology for examining “causal” hypotheses with respect to birth outcomes. It can 

test Wilcox’s hypothesis, as well as, several additional “causal” hypotheses not 

discussed by Wilcox.  Preliminary examination of the causal impact of maternal age on 

infant mortality indicates statistically significant direct effects, but few significant 

indirect effects operating through birth weight.  Indirect effects can and do operate 

through the proportion of “normal” to “compromised” births and hence birth weight, at 

least in European Americans.  However, these do not account for a large proportion of 

the total maternal age effect on infant mortality.  The majority of the impact of maternal 

age on infant mortality occurs as direct effects and does not operate through birth 

weight.  The most effective interventions should minimize these direct effects regardless 

of there effect on birth weight. 
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 Table 1   Descriptive statistics for the sample populations 
Birth Cohort   Af. Am. F   Af. Am. M   Eu. Am. F   Eu. Am. M 

Parity   0 1 & 2   0 1 & 2   0 1 & 2   0 1 & 2 

# Births  22981 24801  24028 25931  111203 124120  117657 130811 

# Deaths  294 263  366 336  547 594  730 776 

CDR   12.79 10.60  15.23 12.96  4.92 4.79  6.20 5.93 

Birth weight (grams) distribution          

Min  195 140  120 116  78 100  170 113 

5%  2041 2155  2146 2250  2500 2608  2552 2693 

25%  2807 2835  2920 2977  3033 3118  3147 3232 

50%  3120 3175  3260 3317  3345 3402  3459 3550 

75%  3450 3515  3572 3640  3657 3720  3799 3884 

95%  3941 4026  4082 4167  4139 4206  4309 4394 

max  6522 6120  6350 6719  7999 7919  7709 7940 

Maternal age distribution           

Min  12 14  12 14  11 15  10 15 

5%  17 19  17 19  19 21  19 21 

25%  20 24  20 23  23 25  23 26 

50%  24 27  24 27  26 29  26 29 

75%  28 31  28 31  30 32  30 32 

95%  34 37  34 37  35 37  35 36 

max   45 47   48 48   47 55   55 58 

Af. = African, Eu. = European, Am. = American, F. = Females, M. = Males 

CDR = Crude death rate (deaths per 1000 births) 

 
 
 



Table 2   Definitions of the model parameters 
Symbol Definition 

Mixture Submodel parameters for the i subpopulation (i = s and p)  

   --- functions of covariate z (maternal age) 

πp(z) Mixing proportion (% primary subpopulation) 

α0 Constant in the nonlinar function for πp(z) 

α1 Linear term in the nonlinar function for πp(z) 

α2 Square term in the nonlinar function for πp(z) 

µi(z) Mean birth weight 

γi,0 Constant in the nonlinar function for µi(z) 

γi,1 Linear term in the nonlinar function for µi(z) 

γi,2 Square term in the nonlinar function for µi(z) 

σi(z) Standard deviation of birth weight 

λi,0 Constant in the nonlinar function for σi(z) 

λi,1 Linear term in the nonlinar function for σi(z) 

λi,2 Square term in the nonlinar function for σi(z) 

Mortality submodel parameters for the i subpopulation (i = s and p)  

   --- coefficients of a second degree bivariate polynomial   

a*ix Constant 

b*ix Linear term for standardized birth weight (x*i) 

c*ix Square term for standardized birth weight (x*i) 

b*iz Linear term for covariate z (maternal age) 

c*iz Square term for covariate z (maternal age) 

d*i Interaction term for standardized birth weight (x*i)  and covariate z (maternal age) 

 
 



Table 3   Significance of the parameters based on bias-adjusted bootstraps 
Birth Cohort   Af. Am. F   Af. Am. M   Eu. Am. F   Eu. Am. M 

Parity   0 1 & 2   0 1 & 2   0 1 & 2   0 1 & 2 

α1  0 0  0 0  2 2  1 2 

α2  0 0  0 0  1 1  1 1 

γs,1  0 1  0 0  0 0  0 0 

γs,2  0 0  0 0  0 0  0 0 

λs,1  2 2  1 2  2 1  1 2 

λs,2  1 1  0 1  1 1  1 1 

γ p,1  1 1  1 1  1 1  1 1 

γ p,2  1 1  1 1  1 1  1 1 

λp,1  0 0  0 0  1 0  0 1 

λp,2  0 0  0 0  1 0  0 1 

b*sx  2 0  2 0  2 2  2 2 

c*sx  1 0  1 0  1 1  1 1 

b*sz  0 0  0 0  1 1  0 0 

c*sz  0 0  0 0  0 1  0 0 

d*s  0 0  0 0  0 0  0 1 

b*px  1 2  2 1  1 2  1 2 

c*px  1 1  1 1  1 1  1 1 

b*pz  0 1  0 0  0 1  1 1 

c*pz  0 1  0 0  0 0  1 1 

d*p   0 0   0 0   0 0  0 0 

0 not significant 

1 significant 

2 significant (higher order term is significant) 

 



Table 4   Decomposition (%) of Maternal Age Effect on Total Infant Mortality 
Birth Cohort   Af. Am. F  Af. Am. M  Eu. Am. F  Eu. Am. M 

Parity   0 1 & 2  0 1 & 2  0 1 & 2  0 1 & 2 

mixing proportion (pp)             0.0 0.0 0.2 0.0 0.0 0.6 0.2 0.1

primary indirect effect             

             

           

          

              

1.9 0.9 1.8 0.3 1.1 1.5 0.0 1.3

secondary indirect effect 31.3 28.6 64.3 13.2 16.0 21.7 28.3 4.6

primary direct effect 3.3 57.4  21.9 6.6 2.7 60.2  28.1 69.5

secondary direct effect   63.3 13.0   11.9 79.8 80.2 15.8 43.4 24.5

Total 100 100 100 100 100 100 100 100

 
 

  



Figure Captions 

 

Figure 1. Characteristic changes in birth weight and mortality based on Wilcox’s 

theory of the relationship of birth weight and infant mortality.  Panel a indicates 

the expected effect of a covariate that influences mean birth weight, resulting in a 

similar shift in birth weight specific infant mortality.  If the shifts are identical 

there is no change in mortality and birth weight is not on the “causal” pathway, 

that is there is no indirect effect of the covariate on mortality.  Panel B. indicates a 

direct effect of a covariate on mortality, identical at all birth weights.  Of course, a 

covariate could influence birth weight and have a direct effect.  Whether birth 

weight is “causal” in this case depends upon the lateral shift in birth weight 

specific mortality compensates or not, as in Panel a.  See Wilcox’s website for 

additional details (http://eb.niehs.gov/bwt/subcwhy.htm). 

 

Figure 2. Characteristic changes in the means, variances, and mixing proportions 

with maternal age of the primary and secondary birth weight density 

components by parity. Panel a presents the means, panel b presents the square 

root of the variances, while panel c presents the mixing proportions.  The results 

are for European American males and are similar to the results for all 

populations examined except as noted in the text.  ⎯⎯ primary primiparous; - ⋅ - 

⋅ - primary multiparous; - - - - secondary primiparous;  ⋅⋅⋅⋅⋅⋅⋅ secondary 

multiparous. Bold lines represent the model-based estimation and lighter lines 

represent the bias-adjusted 95% confidence intervals. 

 

Figure 3. Characteristic changes in infant mortality by maternal age and by 

parity. Panel a, b, and c present total, primary, and secondary infant mortality, 

respectively. The results are for European American males and are similar to 

results for all populations examined except as noted in the text. ⎯⎯ 



primiparous; - - - - - multiparous. Bold lines represent the model-based 

estimation and lighter lines represent the bias-adjusted 95% confidence intervals. 

 

Figure 4 Characteristic model estimated birth weight specific infant mortality 

curves by maternal ages for primiparous European American males. Panel a, b, 

and c present changes in the primary subpopulation, the secondary 

subpopulation and the total birth cohort, respectively. ⎯⎯  15 years; - - - - 25 

years ; ⋅⋅⋅⋅⋅⋅⋅35 years;  - ⋅ - ⋅ - 45 years.  Panel c shows, the pediatric paradox with 

maternal age, births to 45 year old mother’s  have lower mortality at low birth 

weights but higher mortality at normal birth weights compared to 25 and 35 year 

old mothers.   
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Figure 2a:  European American Males  Mean Birth Weight

Maternal Age (years)
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Figure 2b:  European American Males  Standard Deviation

Maternal Age (years)
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Figure 2c:  European American Males  Proportion in Secondary Population
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Figure 3a:  European American Males  Total Mortality
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Figure 3b:  European American Males  Primary Mortality
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Figure 3c:  European American Males  Secondary Mortality
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Figure 4a:  European American Males  Primiparious Primary Mortality

Birth Weight (grams)
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Figure 4b:  European American Males  Primiparious Secondary Mortality

Birth Weight (grams)
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Figure 4c:  European American Males  Primiparious Total Mortality

Birth Weight (grams)
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	Data and Methods:
	The mixing proportion is specified as , which transforms the
	Eq. 9
	Eq. 10



