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ABSTRACT 

Population forecasts entail a significant amount of uncertainty, especially for long-range 

horizons and for places with small or rapidly changing populations. This uncertainty can be dealt 

with by presenting a range of projections or by developing statistical prediction intervals based 

on models that incorporate the stochastic nature of the forecasting process or on empirical 

analyses of past forecast errors. In this paper, we develop and test empirical prediction intervals 

for county population forecasts in the United States. We find that prediction intervals based on 

the distribution of past forecast errors provide reasonably accurate predictions of the distribution 

of future forecast errors. We believe the construction of empirical prediction intervals to 

accompany population forecasts will help data users plan more effectively for an uncertain 

future. 
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Population forecasts entail a significant amount of uncertainty, especially for long-range 

horizons and for places with small or rapidly changing populations. More than 30 years ago, 

Keyfitz (1972) made the case that demographers should provide a warning regarding that 

uncertainty to the users of their forecasts. This warning has typically been provided by 

presenting a range of projections (e.g., Hollmann et al. 2000), but in recent years attention has 

been given to developing statistical prediction intervals that provide an explicit probabilistic 

statement regarding the level of error expected to accompany a population forecast. Statistical 

prediction intervals can be based on models that incorporate the stochastic nature of the 

forecasting process (e.g., Alho and Spencer 1990; Cohen 1986; Lutz et al. 1999; Pflaumer 1992) 

or on empirical analyses of past forecast errors (e.g., Keyfitz 1981; Smith and Sincich 1988; 

Stoto 1983; Tayman et al. 1998).  

In this paper, we develop and test prediction intervals based on the latter approach. Under 

formal definitions, probability statements regarding the accuracy of population forecasts based 

on the distribution of past forecast errors cannot be made because the distribution of future errors 

is unknown (and unknowable) at the time the forecasts are made. However, if current forecasting 

methods are similar to those used in the past, and if the degree of uncertainty is about the same in 

the future as it was in the past, then we can assume that future forecast errors will be drawn from 

the same distribution as past forecast errors (Keyfitz 1981). If this is true, empirical prediction 

intervals will provide a reasonable measure of the uncertainty surrounding current population 

forecasts. 

The usefulness of empirical prediction intervals relies heavily on the assumption that the 

distribution of forecast errors remains stable over time. Few researchers have evaluated the 

validity of this assumption. Perhaps the most comprehensive evaluation was conducted by Smith 
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and Sincich (1988), who examined state-level population forecasts using data from 1900 to 1980. 

Following a methodology developed by Williams and Goodman (1971), they evaluated forecast 

errors for 10- and 20-year horizons and found that the means and variances of absolute forecast 

errors remained relatively stable over time, especially after 1920, and that the variances of 

algebraic forecast errors remained moderately stable over time but their means were not at all 

stable. They concluded that the study of past forecast errors is useful for forecasting the level of 

precision of current population forecasts, but not for forecasting their tendency to be too high or 

too low.  

Since that study, little additional research has analyzed the stability of forecast errors over 

time or investigated the performance of empirical prediction intervals. To our knowledge, no 

study has considered these issues at the substate level. We believe research at the substate level is 

essential because small-area forecasts are used by decision makers for a wide variety of 

planning, budgeting, and analytical purposes. Examples include planning for future water 

consumption (Texas Water Development Board 1997), choosing locations for new fire stations 

(Tayman et al.1994), evaluating the demand for additional hospital services (Thomas 1994), and 

projecting future public school enrollment (McKibben 1996). Optimal decisions cannot be made 

without some understanding of the likely level of accuracy of the population forecasts upon 

which those decisions are based. 

In this paper, we analyze population forecast errors for counties in the United States. 

Following the approach used by Smith and Sincich (1988), we construct empirical prediction 

intervals and investigate whether error distributions from previous forecasts provide useful 

predictions of error distributions for subsequent forecasts. We do not conduct formal statistical 

tests, but rather evaluate stability indirectly using averages, medians, 90
th

 percentile errors, and 
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coefficients of variation. We find that the study of past forecast errors can indeed provide useful 

information regarding the likely distribution of future forecast errors. We believe this 

information provides a basis for constructing empirical prediction intervals that will help data 

users evaluate the likely accuracy of population forecasts and plan more effectively for an 

uncertain future. 

 

DATA AND FORECASTING TECHNIQUES 

We used decennial census data from 1900 to 2000 to construct and analyze population forecasts 

for counties or county equivalents in the United States. We restricted our analysis to the 2,482 

counties for which there were no significant boundary changes between 1900 and 2000; this 

group accounted for 79% of all counties in 2000. Forecast errors for this group of counties were 

compared to forecast errors for a larger group of 2,978 counties (accounting for 95% of all 

counties) whose boundaries did not change significantly after 1930. Precision and bias for these 

two groups of forecasts were found to be very similar. We used the smaller group with constant 

boundaries since 1900 because it permitted the analysis of a larger number of launch years and 

forecast horizons. 

 We use the following terminology to describe population forecasts: 

1) Base year: the year of the earliest population size used to make a forecast. 

2) Launch year: the year of the latest population size used to make a forecast. 

3) Target year: the year for which population size is forecasted. 

4) Base period: the interval between the base year and launch year. 

5) Forecast horizon: the interval between the launch year and target year. 
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For example, if data from 1900 and 1920 were used to forecast population in 1930, then 1900 

would be the base year, 1920 would be the launch year, 1930 would be the target year, 1900–1920 

would be the base period, and 1920–1930 would be the forecast horizon. 

We made forecasts of total population for each county using seven simple trend 

extrapolation techniques (see Appendix for a description of these techniques). The forecasts were 

based on 20-year base periods, the base period shown previously to produce the most accurate 

forecasts for counties in this data set (Rayer 2004). The forecasts had launch years extending 

from 1920 to 1990 and horizons ranging from 10 to 30 years. The 21 combinations of launch 

year and forecast horizon—and their associated target years—are shown in Table 1.  

 

[Table 1 about here.] 

 

Compared to other techniques, simple trend extrapolation techniques have a number of 

advantages for population forecasting purposes. They require few base data, can be employed at 

low cost, and can be applied retrospectively to produce forecasts that are comparable over time. 

These characteristics are particularly important when making forecasts for a large number of 

geographic areas and historical time periods. Furthermore, a substantial body of evidence 

indicates that trend extrapolation techniques produce forecasts of total population that are at least 

as accurate as those produced by more complex techniques (for a summary of the evidence, see 

Smith et al. 2001:307–313). We believe these techniques provide a useful vehicle for assessing 

the stability of population forecast errors over time and testing the validity of empirical 

prediction intervals. 
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We calculated the average of the seven individual forecasts for each county (AV7) and 

the average after the highest and lowest were excluded (AV5). The latter measure reduces the 

impact of outliers on forecast errors and is often called a trimmed mean; we found it produced 

slightly smaller forecast errors than AV7 in the present study. A number of studies have 

documented the benefits of combining forecasts, both in demography and other fields 

(Armstrong 2001:417–439; Smith et al. 2001:328–331). Given the large number of individual 

forecasts, we present only the results for AV5; however, it should be noted that many of the 

results for the other techniques were similar to those reported here.  

Forecasts for each county were made for each of the 21 launch year/forecast horizon 

combinations shown in Table 1 and were compared to census counts for each target year. The 

resulting differences are called forecast errors, although they may have been caused partly by 

errors in the census counts themselves. All errors are reported as percentages by dividing by 

census counts and multiplying by 100. We refer to errors that ignore the direction of the error as 

absolute percent errors (APEs) and errors that account for the direction of the error as algebraic 

percent errors (ALPEs). 

 

GENERAL DESCRIPTION OF FORECAST ERRORS 

Several summary measures were used to provide a general description of forecast errors. The 

mean absolute percent error (MAPE), median absolute percent error (MEDAPE), and 90
th

 

percentile error (90
th

PE, calculated as the APE that was larger than exactly 90% of all APEs) are 

measures of precision; they show how close the forecasts were to population counts regardless of 

whether they were too high or too low. The mean algebraic percent error (MALPE) and median 

algebraic percent error (MEDALPE) are measures of bias; they show the tendency for forecasts 
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to be too high or too low. These and similar measures have often been used to evaluate the 

accuracy of population forecasts (e.g., Isserman 1977; Pflaumer 1992; Rayer 2004; Smith and 

Sincich 1988; Tayman et al. 1998).  

We also used a measure of the distribution of APEs. The coefficient of variation (CV) is 

the standard deviation divided by the mean error, multiplied by 100. It provides a measure of the 

dispersion of forecast errors around the mean value. Theoretically, CV values can range from 

zero to infinity. In reality, they are seldom zero and rarely approach infinity, although they are 

often found to be greater than 100. High values reflect a high degree of dispersion around the 

mean and low values reflect a low degree of dispersion. When measured over time, high CV 

values reflect a low degree of temporal stability and low values reflect a high degree of stability. 

The CV provides a way to compare the degree of dispersion in one data series with that in 

another, even if the means differ substantially from each other. In this paper, we do not show 

coefficients of variation for algebraic percent errors because the measure loses its meaning and 

usefulness when the mean approaches zero and the distribution contains both positive and 

negative values (Lohninger 1999).
 

How can CV values be judged? That is, what values reflect high, medium, or low degrees 

of stability? There are no clear guidelines in the literature; rather, values have been found to 

differ substantially from one context to another, depending on the specific variables, geographic 

regions, and time periods covered. For example, CV values for measures of athletic performance 

have been found to fall between 1% and 5%, depending on the nature of the event, the time 

between events, and the experience of the athlete (Hopkins 2000). Interest rates for household 

saving deposits have exhibited CV values between 8% and 28% for countries in the European 

Union (European Central Bank 2006). A study of the commercial television industry found a CV 



 8 

of 94% in turnover rates for managers (Sørenson 2002). A study of subcounty forecast errors in 

San Diego County found CV values ranging from 75% to 235% for populations in different size 

categories (Tayman et al. 1998). In analyzing the stability of forecast errors over time, we 

classify CV values of less than 10% as very stable, 10–25% as stable, and greater than 25% as 

unstable. 

 

[Table 2 about here.] 

 

Table 2 shows forecast errors for counties by target year and forecast horizon. Several 

patterns stand out in the measures based on APEs. First, the MAPE exceeded the MEDAPE for 

every horizon and target year, indicating that even though the trimmed mean (AV5) excluded the 

individual forecasts with the highest and lowest values, MAPEs were still affected by the 

presence of outliers. Typically, MAPEs exceeded MEDAPEs by 30–40%. Second, errors 

increased about linearly with the forecast horizon. For each ten year increase in the forecast 

horizon, MAPEs rose by about 10%, MEDAPEs by about 7%, and 90
th

PEs by about 21%. Third, 

there were only modest differences in errors by target year within each forecast horizon, at least 

until the last few target years. Only for 1990 and 2000 for 10-year horizons and 2000 for the 20-

year horizon were errors substantially different than for all other target years. We offer an 

explanation for this finding later in the paper. 

Whereas MAPEs always exceeded MEDAPEs, MALPEs were sometimes larger than 

MEDALPEs and sometimes smaller. Both of these measures of bias varied considerably by 

target year, as is shown by the large standard deviations and changes in sign from one target year 

to another. However, there was a tendency for MALPEs and MEDALPEs to be positive for 
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earlier target years and negative for later target years, especially for longer forecasts horizons. In 

general, we believe that there is no predictability regarding the likelihood that a given set of 

forecasts will turn out to be too high or too low. A number of previous studies have drawn 

similar conclusions (e.g., Isserman 1977; Kale et al. 1981; Smith and Sincich 1988; Tayman et 

al. 1998). 

The CV generally declined as the target year increased, although the differences from one 

target year to another were not extremely large. This implies that APEs became slightly more 

concentrated around the mean as the century progressed. It is particularly noteworthy that—in 

contrast to the other measures—CVs changed very little as the forecast horizon grew longer. 

This shows that even though the MAPE, MEDAPE, and 90
th

PE increased steadily with the 

length of the forecast horizon, the degree of dispersion of APEs around the mean remained quite 

stable.  

The bottom three rows of each panel in Table 2 provide a summary of the results for all 

the individual target years within a given length of forecast horizon; that is, the average, standard 

deviation, and CV are based on the values of each error measure for each target year. The CV in 

the bottom row has a different interpretation than the CV discussed above. Whereas the CV for 

the right-hand column of the table shows the degree of dispersion of APEs around the mean for 

individual target years, the CV in the bottom row of each panel shows the degree of dispersion of 

MAPEs, MEDAPEs, and 90
th

PEs across target years.  

Although the averages varied considerably from measure to measure, the CVs for the 

MAPE, MEDAPE, and 90
th

PE were very similar to each other within each of the three horizons, 

ranging only from 22 to 25 for 10-year horizons, from 20 to 22 for 20-year horizons, and from 13 

to 17 for 30-year horizons. The CVs for the CV had even lower values. These results reflect a 
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fairly high degree of stability in the distribution of APEs over time and provide support for the 

hypothesis that empirical prediction intervals based on errors from one time period will provide 

reasonable measures of uncertainty for subsequent population forecasts.  

 

EMPIRICAL PREDICTION INTERVALS 

Although the data in Table 2 show a substantial degree of stability over time in the distribution 

of APEs, they show no stability at all in the distribution of ALPEs. This suggests that the study 

of past forecast errors may help us predict the level of precision of current forecasts, but is not 

likely to help us predict their tendency to be too high or too low. We therefore focus on the 

distribution of APEs in our efforts to develop and evaluate empirical prediction intervals.  

Under the approach used by Smith and Sincich (1988), information on the distribution of 

past APEs is used to predict the distribution of future APEs. A major advantage of this approach 

is that it can accommodate any type of error distribution, including the asymmetric and truncated 

distributions characteristic of APEs. It also permits an assessment of the prediction intervals 

themselves; that is, we can compare the actual number of errors falling within the intervals with 

the predicted number.  

Following this approach, we ranked the APEs for each of the 21 sets of forecasts and 

determined the 90
th

PE, as shown in Table 2. Then, we used the 90
th

PE from target year t-n as the 

forecast of the 90
th

PE in target year t, where n is the length of the forecast horizon. For example, 

if 1950 was the target year for a 10-year forecast based on launch year 1940, the 90
th

PE for 1950 

would be used to predict the 90
th

PE for 1960 for a 10-year forecast based on launch year 1950. If 

error distributions remain relatively stable over time, 90
th

PEs from past distributions will provide 

reasonably accurate predictions of future 90
th

PEs. To assess the validity of that hypothesis, we 
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compared the predicted with the actual 90
th

PE for each target year and computed the percentage 

of APEs that fell within the predicted values. 

 

[Table 3 about here.] 

 

Table 3 shows the percentage of APEs in each target year that was less than the predicted 

90
th

PE. The numbers can be interpreted as follows: A value of 90 reflects a perfect prediction. 

Values below 90 indicate that the 90
th

PE for target year t was greater than the 90
th

PE for target 

year t – n (i.e., fewer APEs fell within the predicted range). Values above 90 indicate the 

opposite. In addition to errors for each target year, this table shows 90
th

PEs averaged across all 

target years for each horizon, along with the standard deviation and CV associated with the 

average 90
th

PE. 

For averages covering all the target years within a given forecast horizon, Table 3 reflects 

a high degree of stability for horizons of differing lengths: approximately 91% of APEs fell 

within the predicted 90
th

PE for all three horizons. There was more variability when comparing 

individual target years within each horizon, but for the most part the values did not stray far from 

90, indicating a reasonably high degree of stability over time. CVs were slightly above 6% for all 

three horizons, further demonstrating temporal stability.  

It is possible that using data from several historical time periods to predict future forecast 

errors will provide better results than using data from a single time period. To test this 

hypothesis, we evaluated the percentage of 90
th

PEs that were less than the average of the two 

previous target years (not shown here). This adjustment had little impact on the results, generally 
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leading to errors that were slightly larger than those shown here. In this sample, then, data from 

a single time period were sufficient for constructing empirical prediction intervals. 

In order to investigate the impact of the choice of cut-off points for the prediction 

intervals, we replicated the analysis using 75
th

 percentile errors (75
th

PE) instead of 90
th

 percentile 

errors (not shown here). This led to generally similar results, albeit with somewhat more 

variability from one target year to another. We believe this greater variability was caused by the 

greater concentration of APEs around the 75
th

PE than the 90
th

PE. As a result, small differences 

in the size of the predicted percentile error led to a larger difference in the percentage of APEs 

falling within the predicted value for the 75
th

PE than for the 90
th

PE. In general, the further the 

distance from the center of an error distribution, the lower the concentration of APEs around a 

particular percentile error.  

 

[Table 4 about here.] 

 

Many studies have found forecast errors to be affected by differences in population size 

and growth rate. Table 4 shows 90
th

PEs for counties by population size in the launch year, for 

each combination of target year and forecast horizon. For each target year and length of horizon, 

errors generally declined as population size increased, with the largest declines typically 

occurring in the move from the smallest to the next-smallest size category. The CVs also 

generally declined as population size increased, reflecting a higher degree of year-to-year 

variation in errors for small counties than large counties. Many studies have found forecast errors 

to be larger for small places than large places (e.g., Isserman 1977; Murdock et al. 1984; Rayer 

2004; Smith et al. 2001; White 1954).  
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[Table 5 about here.] 

 

How do differences in population size affect stability in the distribution of forecast errors 

over time? Table 5 shows the percentage of APEs that were less than the predicted 90
th

PE by 

population size in the launch year. In general, differences by population size were fairly small 

and followed no consistent pattern. For some combinations of target year and length of horizon, 

the percentages rose with population size; for others, they fell; and for some, they followed no 

clear pattern. The CVs were small and did not vary much among the four size categories or by 

length of forecast horizon. Although 90
th

PEs themselves varied considerably with differences in 

population size, it appears that differences in population size had no consistent impact on the 

predictability of 90
th

PEs.  

 

[Table 6 about here.] 

 

Table 6 shows 90
th

PEs for counties by the rate of population growth during the base 

period, for each combination of target year and forecast horizon. Errors generally displayed a U-

shaped pattern, with higher values for counties with large negative growth rates, smaller values 

for counties with moderate growth rates, and higher values for counties with large positive 

growth rates. These patterns are also consistent with those found in previous research (e.g., 

Isserman 1977; Murdock et al. 1984; Smith 1987). CVs followed the same U-shaped pattern for 

10- and 20-year forecast horizons, but followed a continuously upward-sloping pattern for the 

30-year horizon. 
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[Table 7 about here.] 

Table 7 shows the percentage of APEs that were less than the predicted 90
th

PE by 

population growth rate during the base period. In contrast to differences in population size, 

differences in growth rates had a generally consistent impact on the performance of prediction 

intervals: there was a strong tendency for the percentage of APEs that was less than the predicted 

90
th

PE to increase with the growth rate. Values were generally smallest for counties in the lowest 

growth category and increased with increases in the growth rate. Furthermore—as indicated by 

CVs that declined as growth rates increased for all three lengths of forecast horizon—values for 

individual target years varied most for counties with rapidly declining populations and varied 

least for counties with rapidly growing populations. That is, there was more consistency in the 

results across target years for rapidly growing populations than for rapidly declining populations. 

These results suggest that differences in the rate of population growth had a consistent 

impact on the stability of the distribution of forecast errors over time. For counties with rapidly 

declining populations, there was a tendency for the error distribution from the previous target 

year to under-project the 90
th

PE; whereas for counties with rapidly growing populations, there 

was a tendency to over-project the 90
th

PE. 

The results shown in Tables 4 and 6 provide an explanation for why MAPEs, MEDAPEs, 

and 90
th

PEs were smaller for target years at the end of the 20
th

 century than for target years 

earlier in the century, as shown in Table 2. Over the course of the century, the number of large 

counties increased and the number of small counties declined; similarly, the number of counties 

with moderate growth rates increased relative to the number with extreme growth rates. Both of 

these trends raised the number of counties that tend to have relatively small forecast errors and 
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lowered the number that tend to have relatively large forecast errors. Consequently, errors were 

smaller for the last years in the century than for earlier years. 

 

SUMMARY AND CONCLUSIONS 

In this study, we evaluated population forecast errors for 2,482 counties in the United States. The 

forecasts were made using seven simple trend extrapolation techniques and a variety of base 

periods and forecast horizons between 1900 and 2000. We found that: 

1) MAPEs, MEDAPEs, and 90
th

PEs remained fairly constant over time, but declined over 

the last few decades in the century.  

2) MALPEs and MEDALPEs did not remain at all constant over time.  

3) MAPEs, MEDAPEs, and 90
th

PEs increased with the length of the forecast horizon, often 

in a nearly linear manner. 

4) In most instances, the 90
th

PE from one time period provided a reasonably accurate 

forecast of the percentage of APEs falling within the predicted 90% interval in the 

following time period, even for long forecast horizons.  

5) Differences in population size had little impact on the percentage of APEs falling within 

the predicted 90% interval, but differences in population growth rate had a substantial 

impact. 

Based on this evidence, we have concluded that the study of past forecast errors can 

provide useful information regarding the distribution of future APEs, but can provide little 

guidance regarding the tendency for forecasts to be too high or too low. Of particular interest is 

the finding that—throughout the 20
th

 century— 90
th

PEs from previous error distributions 

provided reasonably accurate predictions of subsequent 90
th

PEs. Given the tremendous changes 
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in population trends that occurred during the 20
th

 century, this is quite a notable finding. It 

suggests that data from previous time periods can be used to construct empirical prediction 

intervals to accompany county population forecasts, and that these intervals are likely to provide 

data users with a realistic measure of the degree of uncertainty inherent in population forecasts 

that will enhance their ability to plan intelligently for the future.   

As this paper shows, there is a substantial degree of uncertainty inherent in short-range 

county population forecasts and an even higher degree of uncertainty in long-range forecasts. 

Approximately 10% of the absolute errors in our analysis were greater than 22% for 10-year 

horizons, greater than 41% for 20-year horizons, and greater than 63% for 30-year horizons. In 

addition, some sets of forecasts had an upward bias and others had a downward bias. This high 

degree of uncertainty may be disappointing to data users but we believe it is an accurate 

reflection of reality that must be conveyed to those who use population forecasts for decision 

making purposes.  

For counties and other subnational areas, we believe an empirical approach is likely to 

provide more reliable estimates of uncertainty than models that incorporate the stochastic nature 

of the forecasting process. Model-based prediction intervals require a substantial amount of base 

data and are subject to errors in specifying the model, errors in estimating the model’s 

parameters, and future structural changes that invalidate the model’s parameter estimates (Lee 

1992). In addition, many different models can be specified, each providing a different set of 

prediction intervals (Cohen 1986; Keilman et al. 2002; Sanderson 1995).  

Empirically-based prediction intervals have their own limitations, of course. We found 

that more than 90% of APEs fell inside the 90% prediction intervals in some target years and less 

than 90% in other target years. Intervals based on 75
th

PEs did not perform as well as intervals 
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based on 90
th

PEs. Furthermore, the empirical approach does not provide reliable forecasts of the 

likely direction of future forecast errors. Further research comparing the performance of model-

based and empirical prediction intervals is needed before we can draw firm conclusions 

regarding which approach is likely to provide more useful measures of uncertainty. 

Other questions related to empirical prediction intervals remain to be answered as well. 

Can formal criteria be established for evaluating the stability of error distributions over time? 

How much historical data are needed to develop the most stable intervals? Can techniques be 

developed for adjusting prediction intervals to account simultaneously for the impact of 

differences in population size, growth rates, geographic region, and perhaps other factors as 

well? How do differences in the choice of cut-off points (e.g., 90
th

 vs. 75
th

 percentile) affect the 

accuracy of forecast error predictions? Can information on the distribution of errors for one 

geographic region be used to develop prediction intervals for another geographic region? Would 

results based on other forecasting techniques be similar to those reported in this study? We 

believe future research will provide answers to these and similar questions and enhance our 

ability to construct empirical prediction intervals to accompany population forecasts.  
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APPENDIX: TREND EXTRAPOLATION TECHNIQUES 

We used the following forecasting techniques: linear (LIN), modified linear (MLN), share-of-

growth (SHR), shift-share (SFT), exponential (EXP), constant-share (COS), and constant (CON). 

The linear technique (LIN) assumes that the population will increase (decrease) by the same 

number of persons in each future decade as the average per decade increase (decrease) observed 

during the base period: 

1) Pt = Pl + x / y (Pl – Pb), 

where Pt is the population in the target year, Pl is the population in the launch year, Pb is the 

population in the base year, x is the number of years in the forecast horizon, and y is the number 

of years in the base period.  

The modified linear technique (MLN) initially equals the linear technique, but in addition 

distributes the difference between the sum of the linear county forecasts and an independent 

national forecast proportionally by population size at the launch year: 

2) Pit = LIN + Pil / Pjl (Pjt – ΣLIN), 

where i represents the county and j the nation.  

The share-of-growth technique (SHR) assumes that each county’s share of population 

growth will be the same over the forecast horizon as it was during the base period: 

3) Pit = Pil + [(Pil – Pib) / (Pjl – Pjb)] (Pjt – Pjl),  

while the shift-share technique (SFT) assumes that the average per decade change in each 

county’s share of the national population observed during the base period will continue 

throughout the forecast horizon: 

4) Pit = Pjt [Pil / Pjl + (x / y) (Pil / Pjl – Pib / Pjb)]. 
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The exponential technique (EXP) assumes the population will grow (decline) by the same 

rate in each future decade as during the base period: 

5) Pt = Pl e
rx

, r = [ln (Pl / Pb)] / y, 

Where e is the base of the natural logarithm and ln is the natural logarithm. 

The constant-share technique (COS) assumes the county’s share of the national 

population will be the same in the target year as it was in the launch year: 

6) Pit = (Pil / Pjl) Pjt,  

While the constant technique (CON) assumes that the county population in the target year is the 

same as in the launch year: 

7) Pt = Pl  

Four of these techniques (MLN, SFT, SHR, and COS) require an independent national 

forecast for the target year population. Since no set of national forecasts covers all the launch 

years and forecast horizons used in this study, we constructed a set by applying the linear and 

exponential techniques to the national population. We used an average of these two forecasts as a 

forecast of the U.S. population. 
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Table 1. Target Years by Launch Year and Forecast Horizon 

  

Forecast Horizon (Years) 

    

Launch Year 10 20 30 

    

1920 1930 1940 1950 

1930 1940 1950 1960 

1940 1950 1960 1970 

1950 1960 1970 1980 

1960 1970 1980 1990 

1970 1980 1990 2000 

1980 1990 2000 --- 

1990 2000 --- --- 
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Table 2. Forecast Errors by Target Year and Length of Forecast Horizon 

        

Target 

Year 

Horizon 

Length MAPE MEDAPE MALPE MEDALPE 90
th

PE CV 

        

1930 10 12.2 7.8 2.2 1.4 29.1 113.6 

1940 10 11.2 7.9 0.4 -0.9 23.3 111.2 

1950 10 11.2 7.8 2.9 2.3 24.9 99.8 

1960 10 10.3 7.4 0.3 0.3 23.2 95.7 

1970 10 9.6 6.8 -2.4 -2.0 21.0 101.1 

1980 10 13.2 11.2 -9.5 -9.2 26.3 77.3 

1990 10 7.8 6.4 4.0 4.6 15.6 85.2 

2000 10 6.2 4.5 -3.5 -3.0 13.9 96.9 

        

Average 10 10.2 7.5 -0.7 -0.8 22.2 97.6 

St. Dev. 10 2.3 1.9 4.4 4.2 5.2 12.1 

CV 10 22.5 25.1 - - 23.4 12.4 

        

1940 20 20.2 12.7 5.9 0.6 47.1 112.9 

1950 20 19.9 14.3 3.6 1.0 43.6 100.4 

1960 20 23.0 16.7 6.4 3.1 50.9 92.6 

1970 20 16.7 12.0 -0.5 -1.2 37.3 97.5 

1980 20 21.4 17.4 -12.1 -12.0 45.6 80.8 

1990 20 19.4 16.1 -9.3 -9.8 39.6 77.5 

2000 20 11.4 8.7 0.7 1.9 24.6 93.5 

        

Average 20 18.9 14.0 -0.8 -2.4 41.3 93.6 

St. Dev. 20 3.8 3.1 7.3 6.0 8.6 11.9 

CV 20 20.1 22.1 - - 20.9 12.8 

        

1950 30 33.1 20.9 14.0 4.1 78.7 113.0 

1960 30 32.9 23.4 8.5 2.6 68.1 104.9 

1970 30 31.9 23.2 9.0 3.2 68.3 97.2 

1980 30 22.1 16.8 -9.8 -10.4 49.3 90.0 

1990 30 29.3 24.7 -11.9 -13.9 60.6 78.4 

2000 30 27.8 24.2 -14.5 -17.4 55.3 72.8 

        

Average 30 29.5 22.2 -0.8 -5.3 63.4 92.7 

St. Dev. 30 4.2 2.9 12.6 9.7 10.5 15.4 

CV 30 14.2 13.2 - - 16.6 16.6 
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Table 3. Percentage of APEs Less Than the Predicted 90
th
 Percentile Error 

 

Target Year Horizon Length Percentage 

   

1940 10 93.0 

1950 10 88.4 

1960 10 90.9 

1970 10 92.2 

1980 10 80.1 

1990 10 98.5 

2000 10 92.4 

   

Average 10 90.8 

St. Dev. 10 5.6 

CV 10 6.2 

   

1950 20 91.5 

1960 20 84.9 

1970 20 95.3 

1980 20 83.4 

1990 20 94.0 

2000 20 97.6 

   

Average 20 91.1 

St. Dev. 20 5.7 

CV 20 6.3 

   

1960 30 92.9 

1970 30 89.9 

1980 30 96.9 

1990 30 82.0 

2000 30 93.1 

   

Average 30 91.0 

St. Dev. 30 5.6 

CV 30 6.2 
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Table 4. 90
th
 Percentile Errors by Population Size 

       

Target Year 

Horizon 

Length < 5,000 

5,000 

 – 15,000 

15,000 

 – 50,000 > 50,000 All 

       

1930 10 59.9 30.1 22.8 21.9 29.1 

1940 10 59.0 28.8 17.0 18.4 23.3 

1950 10 45.7 26.0 22.8 22.3 24.9 

1960 10 31.8 23.5 21.5 26.7 23.2 

1970 10 34.8 23.4 18.7 17.4 21.0 

1980 10 36.8 28.7 24.1 19.0 26.3 

1990 10 19.0 16.1 14.9 15.4 15.6 

2000 10 21.0 14.7 12.3 12.5 13.9 

       

Average 10 38.5 23.9 19.3 19.2 22.2 

St. Dev. 10 15.5 5.8 4.2 4.4 5.2 

CV 10 40.3 24.2 22.0 23.0 23.4 

       

1940 20 86.7 57.0 35.9 35.0 47.2 

1950 20 76.7 50.2 35.4 31.6 43.6 

1960 20 80.8 56.1 48.1 43.2 50.9 

1970 20 51.5 35.5 35.5 37.7 37.3 

1980 20 66.8 52.6 38.8 32.0 45.7 

1990 20 53.2 41.9 34.6 34.6 39.6 

2000 20 32.3 25.9 21.8 23.8 24.6 

       

Average 20 64.0 45.6 35.7 34.0 41.3 

St. Dev. 20 19.4 11.7 7.7 6.0 8.6 

CV 20 30.2 25.6 21.6 17.5 20.9 

       

1950 30 124.7 96.5 61.9 54.6 78.7 

1960 30 100.3 80.7 59.4 50.5 68.1 

1970 30 115.1 73.9 64.0 55.5 68.3 

1980 30 68.9 50.5 46.1 42.8 49.3 

1990 30 78.1 67.4 51.7 49.3 60.6 

2000 30 71.5 58.5 47.9 49.2 55.3 

       

Average 30 93.1 71.3 55.2 50.3 63.4 

St. Dev. 30 23.7 16.4 7.6 4.6 10.5 

CV 30 25.4 23.0 13.7 9.1 16.6 
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Table 5. Percentage of APEs Less Than the Predicted 90
th
 Percentile Error by 

Population Size 

Target Year 

Horizon 

Length < 5,000 

5,000 

– 15,000 

15,000 

– 50,000 > 50,000 All 

       

1940 10 90.5 91.4 96.3 94.1 93.0 

1950 10 95.0 92.2 82.8 86.5 88.4 

1960 10 96.1 91.1 91.2 87.6 90.9 

1970 10 87.7 89.7 93.2 98.1 92.2 

1980 10 85.8 78.2 80.3 86.5 80.1 

1990 10 97.6 98.4 99.0 96.2 98.5 

2000 10 86.8 91.1 93.8 94.7 92.4 

       

Average 10 91.3 90.3 90.9 92.0 90.8 

St. Dev. 10 4.8 6.0 6.9 4.9 5.6 

CV 10 5.3 6.7 7.6 5.4 6.2 

       

1950 20 93.0 93.4 90.9 94.8 91.5 

1960 20 88.7 87.2 80.8 81.0 84.9 

1970 20 98.7 97.5 95.4 92.1 95.3 

1980 20 78.4 72.2 87.2 95.0 83.4 

1990 20 97.4 96.3 93.4 86.9 94.0 

2000 20 97.6 97.9 97.3 97.5 97.6 

       

Average 20 92.3 90.7 90.8 91.2 91.1 

St. Dev. 20 7.8 9.9 6.0 6.2 5.7 

CV 20 8.4 10.9 6.7 6.8 6.3 

       

1960 30 88.4 94.6 91.1 93.0 92.9 

1970 30 90.6 91.9 88.0 88.0 89.9 

1980 30 98.0 98.4 96.9 95.0 96.9 

1990 30 80.7 74.5 86.9 85.0 82.0 

2000 30 94.7 95.7 91.9 90.6 93.1 

       

Average 30 90.5 91.0 91.0 90.3 91.0 

St. Dev. 30 6.6 9.5 3.9 4.0 5.6 

CV 30 7.3 10.5 4.3 4.4 6.2 
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Table 6. 90
th
 Percentile Errors by Population Growth Rate 

       

Target Year 

Horizon 

Length < -10% 

-10% 

 to 10% 

10% 

 to 25% > 25% All 

       

1930 10 35.6 17.3 27.2 44.5 29.1 

1940 10 40.7 16.7 21.6 54.1 23.3 

1950 10 19.6 21.6 27.6 37.8 24.9 

1960 10 16.1 19.2 29.7 37.9 23.2 

1970 10 23.9 17.2 17.5 31.2 21.0 

1980 10 31.8 24.1 23.3 30.8 26.3 

1990 10 12.4 13.5 16.1 20.6 15.6 

2000 10 17.3 10.7 13.6 22.6 13.9 

       

Average 10 24.7 17.5 22.1 34.9 22.2 

St. Dev. 10 10.2 4.3 5.9 11.1 5.2 

CV 10 41.4 24.3 26.8 31.8 23.4 

       

1940 20 69.7 25.4 44.8 86.7 47.2 

1950 20 61.0 32.2 51.0 81.5 43.6 

1960 20 44.9 45.4 57.8 74.0 50.9 

1970 20 30.1 30.5 51.1 60.2 37.3 

1980 20 56.8 35.2 34.7 50.5 45.7 

1990 20 47.7 32.8 38.6 50.9 39.6 

2000 20 27.9 19.5 25.5 37.4 24.6 

       

Average 20 48.3 31.6 43.4 63.0 41.3 

St. Dev. 20 15.5 8.1 11.1 18.2 8.6 

CV 20 32.2 25.6 25.7 28.9 20.9 

       

1950 30 71.9 43.5 82.6 145.0 78.7 

1960 30 71.2 54.3 87.8 139.6 68.1 

1970 30 61.6 60.6 82.6 136.6 68.3 

1980 30 56.1 40.4 55.8 68.2 49.3 

1990 30 72.2 46.5 53.0 70.1 60.6 

2000 30 66.0 46.5 52.9 69.9 55.3 

       

Average 30 66.5 48.6 69.1 104.9 63.4 

St. Dev. 30 6.6 7.5 16.8 39.0 10.5 

CV 30 9.9 15.3 24.3 37.2 16.6 



 30 

 

Table 7. Percentage of APEs Less Than the Predicted 90
th
 Percentile Error by 

Population Growth Rate 

       

Target Year 

Horizon 

Length < -10% 

-10% 

 to 10% 

10% 

 to 25% > 25% All 

       

1940 10 84.1 91.1 96.1 91.5 93.0 

1950 10 93.8 82.9 85.0 98.6 88.4 

1960 10 84.7 93.0 88.4 88.2 90.9 

1970 10 75.3 90.5 95.8 93.0 92.2 

1980 10 72.4 76.4 83.9 95.6 80.1 

1990 10 99.5 98.6 97.9 97.0 98.5 

2000 10 78.7 93.2 93.8 89.1 92.4 

       

Average 10 84.1 89.4 91.6 93.3 90.8 

St. Dev. 10 9.8 7.4 5.7 4.0 5.6 

CV 10 11.7 8.3 6.2 4.2 6.2 

       

1950 20 93.7 84.7 93.6 93.1 91.5 

1960 20 92.1 79.1 88.3 94.1 84.9 

1970 20 91.0 96.7 95.5 91.5 95.3 

1980 20 52.5 78.5 97.0 94.2 83.4 

1990 20 95.7 91.7 90.1 93.2 94.0 

2000 20 98.1 97.2 97.7 97.7 97.6 

       

Average 20 87.2 88.0 93.7 94.0 91.1 

St. Dev. 20 17.2 8.4 3.8 2.1 5.7 

CV 20 19.7 9.6 4.1 2.2 6.3 

       

1960 30 89.7 85.4 95.4 92.7 92.9 

1970 30 92.7 86.1 95.4 93.8 89.9 

1980 30 91.0 96.8 98.9 98.6 96.9 

1990 30 67.8 77.2 90.3 89.5 82.0 

2000 30 95.7 89.8 94.1 92.9 93.1 

       

Average 30 87.4 87.1 94.8 93.5 91.0 

St. Dev. 30 11.2 7.1 3.1 3.3 5.6 

CV 30 12.8 8.2 3.3 3.5 6.2 

  

 


