
 

 
 

 
The Role of Models in Model-Assisted and Model-
Dependent Estimation for Domains and Small Areas 

 

 

Risto Lehtonen 

 University of Helsinki 

 

Mikko Myrskylä
1
 

University of Pennsylvania 

 

Carl-Erik Särndal 

University of Montreal 

 

Ari Veijanen 

 Statistics Finland 
 

 

Abstract 
  

 This paper investigates domain total estimation for model-assisted generalized regression (GREG) 

and model-dependent EBLUP estimators under probability proportional to size (PPS) sampling. Two 

particular issues are addressed: (i) how to account for the domain differences in the model formulation, and 

(ii) how to account for the PPS design. Results are based on Monte Carlo experiments. In the experiments, 

the bias of GREG estimator remained negligible for all models, and accuracy improved when the PPS size 

variable was included in the model. For EBLUP, bias was large for weak models, but the bias decreased 

substantially when the PPS size variable was included in the model. Thus double-use of the auxiliary 

information seemed profitable. As an alternative to the classic unweighted EBLUP, we propose a new 

weighted EBLUP estimator for PPS designs. In the experiments the weighted EBLUP behaved much better 

than the unweighted EBLUP.  
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1  Introduction 

Estimation of reliable statistics for population sub-groups or domains constitutes an area of increasing 

importance in demography. Examples where domain level estimation is needed include production of 

official population statistics by demographic and geographic status, estimation of disease prevalence rates in 

sub-groups of the population, and poverty mapping. Typically, a survey is planned to produce reliable 

statistics for the entire population and large or major areas. Standard design-based direct estimators, such as 

the Horvitz-Thompson estimator, are often used for such cases. The task can become challenging when the 

number of sample elements in a number of domains remains small or minor. In this case, more advanced 

methods that effectively use the auxiliary information are needed. The auxiliary information may be 

obtained, for instance, from previous surveys, from administrative registries, or from census data sources.  

Methods available for the estimation of totals for domains and small areas include model-assisted design-

based estimators, referring to the family of generalized regression (GREG) estimators (Särndal, Swensson 

and Wretman 1992, Estevao and Särndal 1999, 2004), and model-dependent techniques, such as the EBLUP 

estimator (Empirical Best Linear Unbiased Predictor) and synthetic estimators (Ghosh 2001, Rao 2003). 

Properties of these estimator types are discussed for example in Lehtonen and Veijanen (1998, 1999) and 

Lehtonen, Veijanen and Särndal (2003, 2005). The documentation of the EURAREA project includes useful 

comparative materials on properties of model-dependent estimators (EURAREA Consortium 2004, Heady 

and Ralphs 2005).  

Known design-based properties related to bias, precision and accuracy of model-assisted estimators and 

model-dependent estimators are summarized in Table 1. Model-assisted estimators are approximately 

design-unbiased by definition, but their variance can become large in domains where the sample size is 

small. Model-dependent estimators are design-biased: the bias can be large for domains where the model 

does not fit well. The variance of a model-dependent estimator can be small even for small domains, but the 

accuracy tends to be poor because the squared bias often dominates the mean squared error (MSE), as shown 

for example by Lehtonen, Veijanen and Särndal (2003 and 2005). The dominance of the bias component 

together with a small variance can cause poor coverage rates and invalid confidence intervals for a model-

dependent estimator. For model-assisted design-based estimators, on the other hand, valid confidence 

intervals can be constructed. Typically, model-assisted estimators are used for major or not-so-small 

domains and model-dependent estimators are used for small domains where model-assisted estimators can 

fail.  
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Table 1. Design-based properties of model-assisted and model-dependent estimators for domains and small 

areas. 

 Design-based model-assisted 

methods - GREG family 

Model-dependent methods 

SYN and EBLUP 

Design bias Design unbiased (approximately) by 

the construction principle 

Design biased 

Bias does not necessarily  

approach zero with increasing  

domain sample size 

Precision  

(Variance) 

 

Variance may be large for small 

domains 

Variance tends to decrease with 

increasing domain sample size 

Variance can be small even for 

small domains 

Variance tends to decrease with 

increasing domain sample size 

Accuracy  

(Mean Squared 

Error, MSE) 

MSE = Variance 

(or nearly so) 

MSE = Variance + squared Bias 

Accuracy can be poor if the bias is 

substantial 

Confidence  

Intervals 

Valid intervals can be  

constructed 

Valid intervals not necessarily 

obtained 

Researcher often faces challenging methodological choices when aiming at reliable estimation of population 

totals for domains and small areas. These choices include, for example, the inferential framework, model 

type (mathematical form, specification, parametrization, estimation of model parameters), and estimator type 

(point estimator, estimator of variance or MSE) for the unknown domain totals. Related to the problem of 

model choice, or the role of the model in model-assisted estimators and in model-dependent estimators, the 

two questions of special interest in this study are: 

(i) How to account for the domain differences in the model formulation (relevant for model-

assisted estimators in particular)? 

(ii) How to account for the underlying unequal probability sampling design (relevant for model-

dependent estimators in particular)? 

We discuss points (i) and (ii) to some extent from a design-based perspective, under the fixed finite 

population approach. More specifically, we compare the relative performance (bias and accuracy) of the two 

estimator types of domain totals, GREG, and EBLUP, under different model choices. A continuous response 

variable is assumed. In the construction of models we use both linear fixed-effects models and linear mixed 

models, where random effects are included in addition to the fixed effects. We fit the linear models with 

different parametrizations. In the estimation of the model parameters, we use both weighted and unweighted 

estimation procedures. 

An underlying unequal probability sampling design is assumed. The case of unequal probability sampling is 

of importance for practical purposes in official statistics and many fields of empirical research. Without-

replacement type fixed-size Probability Proportional to Size sampling (systematic PPS) was selected to 

represent an example of an unequal probability sampling design. This study extends the case of equal 

probability sampling investigated in Lehtonen, Särndal and Veijanen (2003, 2005) to unequal probability 

sampling designs. 

The working paper is organized as follows. Chapter 2 introduces our notation and models and estimators 

used. Results for GREG and EBLUP estimators are given in Chapter 3. Conclusions are in Chapter 4. 
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2  Methods 

2.1 Models and estimators of domain totals 

We are interested in the estimation of totals of a continuous response variable y for the domains of interest. 

Availability of powerful auxiliary information is essential for the estimators of domain totals considered. We 

assume that we have access to unit-level data, which include domain membership indicators and vectors of 

auxiliary x-variables, for all units in the population. The auxiliary data vector also contains the size variable 

used in the PPS sampling procedure. The auxiliary data are incorporated in the estimation procedure by an 

appropriate model. Thus, the choice of the model that underlies the GREG, SYN and EBLUP estimators of 

domain totals is considered important. 

Our question (i) was “How to account for the domain differences in the model formulation?”. The domain 

differences can be accounted for by a proper model formulation. Basically, there are two options to facilitate 

the domain differences: (1) introduction of domain-specific fixed effects in the model, and (2) accounting 

for the domain differences by domain-specific random effects, such as random intercepts. It is obvious that 

these options are relevant for model-assisted estimators in particular. The reason is that in a standard GREG 

setting, a fixed-effects linear model is routinely used as the assisting model (Estevao and Särndal 1999, 

2004), and a GREG estimator that uses a mixed model, the MGREG estimator, has been introduced only 

recently (Lehtonen and Veijanen 1999, Lehtonen et al. 2003, see also Goldstein 2003, p. 165). On the other 

hand, a mixed model formulation has a long tradition in the context of EBLUP estimation of small area 

totals (Fay and Herriot 1979, Rao 2003). The problem of model choice is discussed in a more general spirit 

in Firth and Bennett (1998). 

To throw some light on question (ii) “How to account for the underlying unequal probability sampling 

design?”, we study the different options to incorporate the information of the sampling design into the 

estimation procedure. In the modelling phase, there are two main options to account for the sampling design: 

(a) the incorporation of sampling weights in the estimation of model parameters, and (b) the inclusion of 

sampling design variables as additional covariates in the model. By default, sampling weights are 

incorporated in the estimation procedures for all assisting models of GREG estimators. As a rule, sampling 

weights are ignored in the estimation procedures for SYN estimators.  

Typically, the underlying mixed model of a standard EBLUP estimator is fitted in an unweighted manner. 

Rao (2003) introduced a pseudo EBUP estimator, where sampling weights are included in the construction 

of the EBLUP estimator, but the parameters of the mixed model are estimated by unweighted techniques. As 

an alternative to the unweighted EBLUP and pseudo EBLUP, we will introduce a new EBLUP estimator, 

where sampling weights are incorporated in the estimation of parameters of the underlying mixed model. 

We will also compare options (a) and (b) in their successfulness in accounting for the sampling design. It is 

obvious that these options are relevant for EBLUP estimators in particular.  

We study the bias and accuracy properties of the estimators of domain totals by empirical methods. Our 

Monte Carlo simulation experiments consisted of repeated draws of systematic PPS samples from an 

artificially constructed fixed finite population.  

Table 2 shows the model-dependent and model-assisted estimators to be discussed, in a two-way 

arrangement by estimator type and by model choice. Each of the rows corresponds to a different model 

choice. CC model (common intercepts, common slopes) is one whose only parameters are fixed effects 
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defined at the population level; it contains no domain specific parameters. We obtain SYN-CC and GREG-

CC estimators. SC model (separate intercepts, common slopes) is one having at least some of its parameters 

or effects defined at the domain level. These are fixed effects for SYN-SC and GREG-SC and random 

effects for EBLUP-SC, EBLUPW-SC and MGREG-SC. Table 2 also shows the estimation methods that are 

used in the estimation of model parameters.   

To address points (i) and (ii) of Chapter 1, we discuss in more detail GREG-SC and MGREG-SC for GREG 

family estimators and EBLUP-SC and EBLUPW-SC for EBLUP family estimators. 

 

Table 2. Schematic presentation of the model-dependent and model-assisted estimators of domain totals for 

a continuous response variable by model choice and estimator type, under unequal probability sampling. 
 

 

Model choice 

 

 

Estimator type 

 

Model  

abbreviatio

n 

 

 

Model 

specification 

 

 

Effect type 

Estimation  

of model  

parameters 

Model-

dependent  

estimators 

 

Model-assisted  

Estimators 

OLS SYN-CC Not  

applicable(**) 

CC Common  

intercepts  

Common slopes 

Fixed effects 

WLS Not  

applicable(*) 

GREG-CC 

OLS 

 

SYN-SC Not  

applicable (**) 

Fixed effects 

 

WLS 

 

Not  

applicable(*) 

GREG-SC 

REML 

GLS 

EBLUP-SC Not  

applicable (**) 

SC Separate  

intercepts 

Common slopes  

Fixed and  

random 

Weighted REML 

GWLS 

EBLUPW-SC MGREG-SC 

 

OLS Ordinary least squares 

WLS Weighted least squares (sampling weights) 

GLS Generalized least squares 

GWLS Generalized weighted least squares (sampling weights) 

REML Restricted (residual) maximum likelihood 

Weighted REML Restricted pseudo maximum likelihood (sampling weights) 

 

(*) In SYN, weights are ignored in the estimation procedure by default. 

(**) In GREG, weights are incorporated in the estimation procedure by default. 

 

We next introduce the notation used in this study. 

 

Population and sampling design 

 

{ }

1

1

1,2,..., ,...,   Population (fixed, finite)        

,..., ,...,          Domains of interest (non-overlapping)

,  1,...,     Target parameters (domain totals)

( ,..., )       Auxili

d

d D

Ud k

k k pk

U k N

U U U

Y y d D

x x

=

= =∑

′=x ary variable vector                               

1 if         Domain membership indicators, 

0 otherwise      1,...,

dk d

dk

I k U

I d D

= ∈

= =

 

 

Note that we assume the vector value 
k

x  and domain membership to be known for every k U∈ . 
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1

1

: Systematic PPS with sample size 

                           Sample from  

          Random part of  falling in domain 

    Inclusion probability for 

1/  

d d

k

k

k U k

k k

n

s U

s s U s d

x
n k U

x

a

π

π

∈

= ∩

= ∈
∑

=

Sampling design

            Sampling weight for                             k s∈

 

We observe 
k
y for k s∈ . Note that for estimation purposes, sample data and auxiliary data are merged at the 

micro level by using unique ID keys that are available in both data sources. 

 

Models for continuous response y 

 

 

 

 

 

 

 

 

 

 

 

 

Note that fitted values ˆky  are calculated for every k U∈ . 

 

 

Estimators of domain totals 

 

The predictions { }ˆ ;
k
y k U∈  differ from one model specification to another. For a given model 

specification, the estimator of the domain total 
dUd k

Y y= ∑ has the following structure for the three estimator 

types (SYN, GREG, EBLUP): 

 
 

 

 

 

 

 

 

 

 

 

 

Note that ˆ
dSYN

Y  and ˆ
dEBLUP
Y  rely heavily on the truth of the model, and can be biased if the model is 

misspecified. On the other hand, ˆ
dGREG
Y  has a second term that protects against model misspecification. 

We adopt the following conventions (Table 2). In SYN-CC, SYN-SC, GREG-CC and GREG-SC, a fixed-

effects model formulation is assumed. A mixed model is assigned for EBLUP-SC, EBLUPW-SC and 

MGREG-SC estimators. 

0 1 1

0 1 1

Linear fixed-effects models

   CC models  ...

   SC models  ... ,  1,...,

ˆˆ   Fitted values under fixed-effects models   

Linear mixed models 

   SC mode

k k p pk k

k d k p pk k

k k

y x x

y x x d D

y

β β β ε

β β β ε

= + + + +

= + + + + =

′= x β

0 1 1ls  ... ,  1,...,

   where  are domain-specific random intercepts

ˆˆ ˆ   Fitted values under mixed models  , 1,...,  

k d k p pk k

d

k k d

y u x x d D

u

y u d D

β β β ε= + + + + + =

′= + =x β

Model-assisted GREG estimators

ˆ ˆ ˆ          ( )

Model-dependent SYN estimators

ˆ ˆ          

Model-dependent EBLUP estimators

ˆ ˆ          

whe

d d

d

d d d

dGREG k k k kk U k s

dSYN kk U

dEBLUP k kk s k U s

Y y a y y

Y y

Y y y

∈ ∈

∈

∈ ∈ −

= + −

=

= +

∑ ∑

∑

∑ ∑

re 1,..., .d D=
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Measures used in Monte Carlo simulations 

 

In Monte Carlo simulation experiments, by using estimates ˆ ( )
d v

Y s  from repeated samples ; 1,2,...,
v
s v K= , 

we computed for each domain 1,...,d D=  the following Monte Carlo summary measures of bias and 

accuracy. 

(i) Absolute relative bias (ARB), defined as the ratio of the absolute value of bias to the true value: 

  
1

1 ˆ ( ) /
K

d v d d
v

Y s Y Y
K =

−∑  

 

(ii) Relative root mean squared error (RRMSE), defined as the ratio of the root MSE to the true value:  

2

1

1 ˆ( ( ) ) /
K

d v d d
v

Y s Y Y
K =

−∑  

 

Details of the simulations  

 

There were 100 domains in the population. The size of domain d was proportional to exp( )dq , where dq  

was simulated from U(0,2.9). Each observation was allocated to a domain by geometric probability:  

intervals of length exp( )dq  were concatenated and a random point was chosen in (0, exp( )d d
q∑ ). The 

interval containing the point determined the domain of the observation. 

There were 47 minor domains, 19 medium-sized domains and 34 major domains in the population. These 

three classes were defined on the basis of expected sample size ( / )
d

n N N : less than 70, 70-119 and 120 or 

more units, respectively. The smallest domain of the generated population had 1,711 units and the largest 

had 28,296. 

The variable 1x  is the size variable used in PPS sampling. The variable was simulated from uniform 

distribution U(1,11). Another auxiliary variable 2x was simulated from N(0,9). The random effects du were 

simulated independently from N(0,0.25). The error term ε  followed N(0,1). 

Responses were simulated as 

1 21 2 1.5 ( )k k k d ky x x u k dε= + + + + ∈  

Correlations of the variables in the population were: 1( , ) 0.779corr y x = , 2( , ) 0.607corr y x =  and 

1 2( , ) 0.001corr x x = − . Domain means of the response variable were approximately equal, but the totals 

differed considerably: The means of domain totals were 45,614 for minor domains, 117,308 for medium 

domains and 241,527 for major domains. 

Our population size is N = 1,000,000 and sample size n = 10,000. In Monte Carlo experiments, K = 1000 

independent systematic PPS samples were generated. The inclusion probabilities are 1 1/ kk k knx xπ = ∑ . The 

weights 1/k ka π=  varied between 54.6 and 596.5. 
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3  Results 

3.1  GREG estimators 

We first discuss results for GREG estimators. Our point (i) devoted to GREG was “How to account for the 

domain differences in the model formulation”. This is demonstrated by the eight different model 

formulations in Table 3. In models A1, B1, C1 and D1, the domain differences are accounted for by domain-

specific fixed effects 0dβ . In models A2, B2, C2 and D2, we use random intercepts 0 duβ + , where 0β  is 

the fixed intercept common for all domains, and the random term du is domain-specific. In addition, we 

have two explanatory variables at our disposal: the variable 1x , the size variable in PPS design, and  2x , an 

auxiliary variable uncorrelated to 1x . Note that both variables correlate quite strongly with the response 

variable y. For 1x  and 2x , slope parameters 
1

β  and 
2

β  are common fixed effects for all domains. 

For GREG, we incorporate the sampling weights in the estimation procedure of model parameters, including 

the mixed model underlying the MGREG-SC estimator. This facilitates the condition of “internal bias 

calibration” (a proper combination of model formulation and estimation procedure under a given sampling 

design) proposed by Firth and Bennett (1998). 

Table 3 also shows our model building strategy. We start with simple models A1 and A2 and proceed 

towards the population generating model D2. In all models, GREG family estimators are essentially 

unbiased, and a fixed-effects and a mixed model formulations yield similar accuracy. An explanation for this 

observation is that in the simulation setting, the average levels of the response did not vary much over the 

domains. Best accuracy (excluding the true model) is for models where the PPS size variable 1x  is included. 

This demonstrates the accuracy gains attained from the “double-use” of 1x  both in the sampling design and 

in the estimation design; see also Särndal (1996). We also note that accuracy differences between the 

different GREG estimators are substantial, and accuracy improves with increasing the domain sample size. 

Table 3. Average absolute relative bias ARB (%) and average relative root mean squared error RRMSE (%) 

of GREG estimators for minor, medium-sized and major domains of the generated population.  

Average ARB (%) Average RRMSE (%) 

Domain size class Domain size class 

 

Model and  

estimator Minor 

(20-69) 

Medium 

(70-119) 

Major 

(120+) 

Minor 

(20-69) 

Medium 

(70-119) 

Major 

(120+) 

Model A1 
0k d k

y β ε= +  

GREG-SC 1.4 0.5 0.3 13.7 8.1 5.7 

Model A2 
0k d k

y uβ ε= + +   

MGREG-SC 0.2 0.2 0.1 13.7 8.1 5.6 

Model B1 
0 1 1k d k k

y xβ β ε= + +  

GREG-SC 0.2 0.1 0.0 7.8 4.6 3.2 

Model B2 
0 1 1k d k k

y u xβ β ε= + + +  

MGREG-SC 0.2 0.1 0.0 7.8 4.6 3.3 

Model C1 
0 2 2k d k k

y xβ β ε= + +  

GREG-SC 1.4 0.5 0.3 11.6 6.8 4.8 

Model C2 
0 2 2k d k k

y u xβ β ε= + + +  

MGREG-SC 0.2 0.1 0.1 11.6 6.8 4.7 

Model D1 
0 1 1 2 2k d k k k

y x xβ β β ε= + + +  

GREG-SC 0.0 0.0 0.0 1.7 1.0 0.7 

Model D2 
0 1 1 2 2k d k k k

y u x xβ β β ε= + + + +  (Population generating model) 

MGREG-SC 0.0 0.0 0.0 1.7 1.0 0.7 

Variables 
1
x  Size variable in PPS sampling, 

2
x  Auxiliary variable 
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3.2  EBLUP estimators 

For estimators of the EBLUP family, we asked “How to account for the underlying unequal probability 

sampling design?”. We proposed two options for this purpose: (a) the incorporation of sampling weights in 

the estimation of model parameters, and (b) the inclusion of sampling design variables as additional 

covariates in the model. 

We compare unweighted and weighted EBLUP estimators constructed with four mixed model formulations. 

Model A includes a random intercept, variable 
1
x  is included in Model B, variable

2
x is included in Model C 

and both variables appear in the population generating model D. Similarly as for GREG, domain differences 

are accounted for by random intercept terms, and slope parameters are common for all domains. For all 

models (except D), EBLUP estimators are calculated with unweighted and weighted estimation of model 

parameters.  

For Models A and C, unweighted estimators EBLUP-SC are seriously biased. For these models, the PPS 

sampling design is not accounted for. The bias declines considerably when the sampling weights are 

incorporated in the estimation of the mixed model, as shown by the new EBLUPW-SC estimators for 

Models A and C. The unweighted estimator EBLUP-SC under Model B shows best bias behaviour, 

indicating that the inclusion of the PPS size variable in the model can offer a powerful tool for bias reduction 

for EBLUP family estimators. Use of both weighting and the inclusion of 
1
x  in the model appears to be less 

powerful. 

Accuracy behaviour of all EBLUP estimators is infected by the dominance of the squared bias component in 

the MSE, as indicated by the RRMSE figures. This holds for all three domain size classes. Because of large 

bias and small variance, invalid confidence intervals can be obtained. This means that point estimates can be 

systematically far away from the true value, independently of the domain sample size. In addition, accuracy 

does not improve much with increasing the domain sample size. 

 

Table 4. Average absolute relative bias ARB (%) and average relative root mean squared error RRMSE (%) 

of EBLUP estimators for minor, medium-sized and major domains of the generated population. 

Average ARB (%) Average RRMSE (%) 

Domain size class Domain size class 

 

Model and  

estimator Minor 

(20-69) 

Medium 

(70-119) 

Major 

(120+) 

Minor 

(20-69) 

Medium 

(70-119) 

Major 

(120+) 

Model A 
0k d k

y uβ ε= + +   

EBLUP-SC 22.9 23.1 21.7 22.9 23.3 21.8 

EBLUPW-SC 3.7 3.5 3.3 3.9 3.6 3.5 

Model B 
0 1 1k d k k

y u xβ β ε= + + +  

EBLUP-SC 1.8 1.4 0.7 2.8 2.5 2.2 

EBLUPW-SC 3.5 3.5 3.3 3.5 3.6 3.3 

Model C 
0 2 2k d k k

y u xβ β ε= + + +  

EBLUP-SC 22.3 23.1 21.8 22.4 23.2 21.9 

EBLUPW-SC 3.7 3.6 3.2 3.9 3.7 3.3 

Model D 
0 1 1 2 2k d k k k

y u x xβ β β ε= + + + +  (Population generating model) 

EBLUP-SC 0.3 0.1 0.0 1.3 0.8 0.6 

Variables 
1
x  Size variable in PPS sampling, 

2
x  Auxiliary variable 
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4  Conclusions 

Results indicate that under unequal probability sampling, model-assisted GREG family estimators are quite 

insensitive to the model choice, a property also shown in our previous research to hold under SRSWOR. 

Model formulation and the estimation strategy of the model are critical for model-dependent EBLUP family 

estimators. This is especially true when using EBLUP for unequal sampling designs. 

Bias of GREG estimators remained negligible for all model choices. “Double-use” of the same auxiliary 

information, that is, the use of the size variable in the PPS sampling design and in the assisting model, 

appeared to be beneficial with respect to accuracy. The accuracy improved with increasing the domain 

sample size. In this case, the mixed model formulation did not outperform the fixed-effects model 

formulation.  

For model-dependent EBLUP family estimators, the bias can be large for a misspecified model. The PPS 

sampling design could be accounted for with two options, by the inclusion of the PPS size variable in the 

mixed model, or by the use of the weighted version of the EBLUP estimator, where the sampling weights 

are incorporated in the estimation procedure of model parameters. Of these two options, the first one 

appeared to be more effective, producing an EBLUP estimator with small bias and good accuracy. However, 

for both options, the squared bias component can still dominate the MSE, even in minor domains, tending to 

invalidate the construction of proper confidence intervals. Dominance of the bias component also can cause 

that the accuracy does not show improvement, when increasing the domain sample size.  
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