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1 Introduction

Sexual networks are the primary mechanism through which HIV is spread and transformed in
Sub-Saharan Africa (SSA). Theoretical network models have shown that individuals’ positions
within these sexual networks, and the structural characteristics of the network itself, are impor-
tant determinants of HIV infection risks and disease dynamics (Kretzschmar and Morris 1996;
Ghani and Garnett 2000; Newman 2002). Several features of sexual networks that are predicted
by these models to enhance the spread of HIV have been empirically documented in SSA in-
cluding concurrency of sexual partnerships (Morris 1997), skewed degree distributions of sexual
networks (Anderson and May 1991; Jones and Handcock 2003b), and large and robust connected
components (Moody et al. 2003; Moody and White 2003).

Despite the clear theoretical significance of structural features of risk in HIV transmission,
very little work has been done on characterizing the structure of sexual networks in SSA. This
observation is largely attributable to the extremely demanding requirements of network data
collection. Using sociocentric sexual network data from Likoma Island, Malawi, we have a rare
opportunity to understand the structural features of the risk structure of a real sexual network
in an area characterized by a generalized AIDS epidemic.
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1.1 Sexual Networks Violate the Assumptions of Standard Epidemiological
Models

All measures to control an epidemic stem from the requirement to bring the basic reproduction
number below the epidemic threshold of R0 = 1. The basic reproduction number, R0, is the
expected number of secondary infections arising from a single, typical infectious individual in
a completely susceptible population (Heesterbeek 2002). The most efficient route for achieving
this end can be ascertained through analysis of the the transmission model of the infectious
process.

The classical models of mathematical epidemiology (e.g., Bailey 1975; Anderson and May
1991) rely on the assumption that sexual partners are randomly selected (i.e., the population
is assumed to be well-mixed and unstructured). In this model, two key measures to study
epidemics are (1) the basic reproduction number, R0, and (2) the final size of an epidemic s∞.
In a well-mixed and socially unstructured population, R0 is the product of three quantities:
the transmissibility τ , the rate of contact between susceptible and infectious individuals c̄ and
the duration of infectiousness δ. Epidemics are nonlinear phenomena and R0 is a threshold
parameter. When R0 > 1, an epidemic is certain in a deterministic model and has non-zero
probability in a stochastic model. Strategies for disease control and eradication are aimed
at bringing R0 below the threshold of unity, i.e, when the average infection generates fewer
secondary infections than necessary for replacement and the epidemic fades. In the well-mixed
and unstructured case, the final size of the epidemic is given by the implicit equation log(s∞) =
R0(s∞−1), which has exactly two roots on the interval [0 1] when R0 > 1. The smaller of these
roots is the proportion of the population remaining uninfected at the end of an epidemic.

However, because HIV is transmitted by intimate sexual contacts between partners, and
because people employ varied and elaborate rules to choose their partners, HIV transmission
dynamics in real populations are not well described by the classical epidemiological model. For
instance, while African men (and to a lesser extent women) do not report having more sexual
partners than men elsewhere, they tend to have more than one on-going long-term relation at
any point in time. Halperin and Epstein’s summary of research findings shows that close to 20%
of males in Eastern African countries report concurrent partnerships, versus less than 5% almost
everywhere outside of Africa (Halperin and Epstein 2004). Partnerships in SSA can can overlap
for months, maybe years (Lagarde et al. 2001; Morris and Kretzschmar 2000). This pattern
of sexual partnerships that overlap rather than follow each other sequentially (Kretzschmar
and Morris 1996; Moody 2002), is one of several important characteristics of human sexual
networks that violate the classical epidemiological model and importantly affect HIV infection
risks and disease dynamics. Concurrent partnerships appear to increase the speed at which HIV
spreads through a population, and have probably contributed to the rapid take-off of the HIV
epidemic in SSA in the 1980s (Morris and Kretzschmar 2000). Other violations of the classical
epidemiological model include: (1) assortative mixing, i.e., the selection of sexual partners based
on their individual characteristics, can structure a network into communities within which the
disease spreads rapidly, but across which the spread is slow (Laumann et al. 1994; Laumann
and Youm 1999; Morris 1993); (2) small worlds, i.e., networks characterized by bridges joining
otherwise disjoint clusters (Watts and Strogatz 1998; Watts 1999), can lead to thresholds and
rapid disease diffusion to distant subpopulations; (3)robust networks, i.e., groups of persons
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tied together by more than one path in the sexual network, can decrease the ability to control
the spread of HIV because redundant connections continue to transmit HIV even after some
transmission paths are broken or eliminated (Moody et al. 2003; Potterat et al. 2002); (4) skewed
degree distributions, i.e., networks containing individuals with very a high number of partners
(high degree network members), can result in epidemics driven by promiscuous individuals (e.g.,
Liljeros et al. 2001; for a critical perspective, see Jones and Handcock 2003a; Handcock and
Jones 2004).

Because of the strong violations of the basic epidemic model inherent in sexual transmission
of HIV, we currently lack the ability to reliably estimate R0, determine the optimal interventions
for bringing R0 below threshold, or understanding how many people will ultimately be infected
during the course of the HIV epidemic. Using the detailed information on the sexual networks
of Likoma Island, we undertake to remedy this shortcoming.

1.2 Data

Ongoing work conducted in Likoma island (a small island with high HIV prevalence located
in the northern region of Lake Malawi) allowed us to construct detailed images of sociocentric
sexual networks. Complete sexual histories were obtained for the last five sexual partners in a
census of adults in 7 villages of the island. Using a combination of name generators, attribute
matching, and GIS-assisted spatial matching, we were able to construct a sociomatrix of sexual
partnerships from the egocentric data generated by the sexual history surveys.

We extracted data on the sexual relations having taken place over the last 12 months. The
sexual network derived from these relationships is composed of 1463 adults. Of these, 1085
reside in Likoma and 378 reside on the mainland, either in Malawi, Mozambique or elsewhere.
Table 1 presents the distribution of components.

Component Size 2 3 4 5 6 7 8 9 12 13 16 18 21 600
Count 183 63 20 10 7 2 1 2 1 1 2 1 1 1

Table 1: Empirical component size distribution of the one-year sexual network.

The one-year sexual network is extremely sparse with 1208 ties and a corresponding tie
density of 0.0011. Figure 3 plots the one-year network. The large connected component of 600
individuals is clearly visible in the center of the plot. This large component clearly represents a
major structural risk for HIV transmission and a key goal of statistical modeling is understanding
what forces act to form it. If we understand the behavioral mechanisms through which such
large connected components are formed, we can design interventions to address the risk.

Two network statistics are of particular interest for understanding the formation of large con-
nected components in sexual networks: tie density and dyad-wise shared partnerships (DSPs).
These network features have been hypothesized to play a strong role in the diffusion of infec-
tions over networks (Morris 2003). Tie density represents the level of sexual activity (i.e., the
number of partners per actor), whereas DSPs represent the degree of network transitivity. Well
understood properties of random graphs lead to the formation of giant components in random
networks at threshold tie densities. However, comparison of random networks with empirically
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network stat estimate s.e. p-value MCMC s.e.
edges -5.6750 1.5980 0.000383 0.38233
dsp1 -0.5186 0.1378 0.000168 0.02598
dsp2 0.5861 0.4147 0.157557 0.07793

nodematch.sex -4.2113 1.5702 0.007317 0.35206

Table 2: Results of model fit using edges, dsp(1:2), and sex-homophily. Edges, dsp(1), and
sex-homophily are highly significant.

measured networks indicate substantial departures from the simple random structure. Forces
leading to the formation of DSPs are potentially responsible for such departures. Figure 1 rep-
resents graphically a dsp(1) and dsp(2) in a heterosexual network. Transitivity is a fundamental
property of disease transmission networks as it describes the propensity of any two individuals
in the networks to share partners. Moderate to high degrees of transitivity will lead to clus-
tering (Jones and Handcock 2003b) and localization effects in which local prevalence is greatly
amplified but transmission out of the local cluster is low. Such processes have the potential to
explain some of the heterogeneity in epidemic outcomes across localities.

1.3 Statistical Estimation

To investigate these processes of clustering, we will fit exponential random graph (ERGM) mod-
els using STATNET (Handcock et al. 2003), statistical software developed by Mark Handcock
and colleagues for this very purpose. STATNET fits models of the form

Pη(Y = y|X) = c−1 exp{ηTg(y, X)},

where Y is a sociomatrix and P (Y = y|X) indicates the probability of a particular tie in
sociomatrix Y conditional on X, a matrix of covariates, η is a q-vector of coefficients, g(y, X) is
a q-vector of network statistics, c is a normalizing constant c = c(η) =

∑
y∈Y exp{ηTg(y, X)},

and Y is the sample space of possible sociomatrices. This space is astronomically large for even
modestly sized networks. This fact has been the major stumbling block for likelihood-based
inference for social networks. However, recent developments in statistical computing now allow
approximate maximum likelihood estimates of the coefficients η to be calculated using Markov
Chain Monte Carlo (MCMC) simulation (Handcock et al. 2003).

1.4 Preliminary Results

Three parameters were highly statistically significant from the model fit. Edges showed a log
odds of -5.6750, reflecting the low density of ties in the model. Dyad-wise shared partnerships
also showed a negative coefficient, indicating that a tie added to the Likoma network is less
likely to result in a DSP than in a random graph. Sex-homophily also had a highly negative
log-odds, reflecting the fact that this is a heterosexual network. Neither sex nor age homophily
had significant effects on the probability of observing a tie in the one-year network.
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dsp(2)

dsp(1)

Figure 1: Dyad-wise shared partnerships. The dyad is the two blue nodes and their shared
partners are the red nodes, with the relationships defining dsp(1) in turquoise and the dsp(2)
relationships in magenta.
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Figure 2: Female and male degree distributions.
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Figure 3: One-year sexual network for Likoma Island.
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