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Abstract 
 
Numerous studies of aging and longevity in humans accumulated substantial amount of 

data about aging related decline in health/well-being/survival status. Despite substantial 

progress in studying selected areas of aging, the research potential of these data remains 

largely under-explored. This is because traditional studies ignore large portion of related 

information which might be important for better understanding systemic regularities of 

the aging processes in human organism. As a result, many important features of aging 

process in humans remain disconnected. Important examples include: age dependence of 

physiological norm; allostatic adaptation, and allostatic load; resistance to stress, as well 

as regular and stochastic components of physiological age trajectories. In this paper we 

describe the new method of statistical modeling which allows us to connect these 

fundamental concepts of human aging. The properties of this approach and its application 

to the analysis of Framingham Heart Study data are discussed. 
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1. Introduction  

Current studies of mortality rates deal not only with analyses of available life span 

data. A substantial part of this research is going on within an analytical framework 

aiming to derive observed features of mortality curves using respective theoretical 

concepts. These studies include evolutionary biology theory of senescence [1], mutation-

selection balance [2], reliability theory [3,4], and economic theory [5], among others. 

Such abstract analyses became possible because of remarkable regularities revealed in the 

shape of the mortality curve: the decline in the childhood, the exponential increase in the 

adult ages and the tendency to deceleration and leveling off at the oldest old ages. The 

studies intend to explain these regularities as natural phenomena resulting from the 

postulates of the respective theories.  

Researchers studying aging/health/longevity still argue about regularities of 

aging-related deterioration in health and well-being status in humans. The lack of 

consensus in this area delays development of comprehensive models and theory. The 

revealed findings and regularities of the aging process remain largely disconnected and 

the high potential of data collected in many longitudinal studies remains underused. The 

typical situation is that only portions of available data are currently used and most of 

them are analyzed separately using formal statistical methods. Such methods, however, 

largely ignore current knowledge and theory about aging in the process of data analyses. 

Meanwhile, it is clear that the progress in developing such modeling concepts would 
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make combining distinct subsets of large-scale longitudinal data possible. The joint 

analysis of such data would allow for systemic addressing the issues on comprehensive 

interplay between different aging-related changes in a human organism. Ultimately this 

approach will help making a complete picture out of available mosaic details, findings, 

and regularities of aging-related changes in humans.  

Overcoming these methodological problems is the matter of time. Several 

interesting concepts capable of capturing fundamental features of aging-related changes 

are now underway. They are related to the notion of allostatic load [6], the decline in 

adaptive capacity (homeostenosis) [7,8], the decline in resistance to stresses [9], the 

aging-related physiological norms, and heterogeneity in longitudinal data.  

The formal approaches to the joint analysis of longitudinal and time-to-event data 

have been also developed during the last decades (see recent reviews in [10-12]). Joint 

longitudinal-survival models are the models that describe the joint behavior of the 

process generating the observed measurements and the survival (generally, time-to-event) 

process. The first, “longitudinal,” process is observed at respective times of measurement 

and the second, “survival,” process generates (possibly censored) event times that depend 

on the observations of the longitudinal process. The frequently used approach for a 

univariate case assumes that the longitudinal data follow a linear mixed-effects model 

[13] and that the hazard depends both on the random effects and other time-independent 

covariates through a Cox proportional hazard relationship [14-16]. Xu and Zeger [17] 

extended the model using the generalized linear model for the longitudinal process to 

allow for continuous or discrete covariates. Wang and Taylor [18] included a stochastic 

(an integrated Ornstein-Uhlenbeck) process into the model of longitudinal data to allow 
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for random fluctuations of individual measurements around the population average. In 

Henderson et al. [19], a latent bivariate Gaussian process is introduced as a time-

dependent variable in a proportional hazard model. Multivariate generalizations of such 

methods and the estimation procedures have been suggested recently [20-25].  

The models mentioned so far use the Cox proportional hazards to characterize the 

relationship between the longitudinal and survival data. There are, however, many cases 

where the proportionality assumption fails. For such situations other models need to be 

used. Tseng et al. [26] used an accelerated failure time survival model as an alternative to 

the Cox model with longitudinal covariates following a linear mixed-effects model with 

measurement errors. Song and Huang [27] used a joint longitudinal-survival model with 

an additive hazard, where time-dependent covariates measured with errors are added to 

the baseline hazard.  

An important class of models for analyses of longitudinal data is based on a 

biologically-motivated assumption of a quadratic hazard which is justified by J- or U-

shapes of hazards considered as functions of risk factors observed in epidemiological 

studies [28]. These models were developed and intensively used in the studies of 

longitudinal data [29-33]. The advantageous feature of this approach is that it allows for 

incorporation of the new insights and ideas appearing in the course of research on aging.  

In this paper we propose a new model of health, mortality, and aging, which will 

further develop this biologically-motivated approach by including all four major concepts 

of aging known to date, i.e., the notions of the age-dependent physiological norms, 

allostatic load, adaptive capacity and resistance to stress, and investigate the potential for 

the model application to the analysis of longitudinal data. 
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The reminder of the paper is organized as follows. Section 2 presents the model 

and outlines the estimation procedure. Section 3 describes the results of a simulation 

study checking the estimation procedure and the model performance. The last section 

summarizes the results and discusses perspectives of further research in this area.  

2. Model 

2.1. General description 

The arguments discussed above allow us to formulate requirements for the model 

capable of connecting different aspects of aging and explore respective links in the 

analyses of longitudinal data. It is clear that it should be a dynamic model capable of 

describing random differences between individual trajectories of physiological or other 

indices. The values of such indices have to affect health or mortality risks. The model 

should be capable of describing the J-, or U-shape of the risk considered as a function of 

risk factors. The age trajectory in physiological space, for which the minimum value of 

the risk function is reached, will characterize the age-dependent physiological norm. 

Persistent deviations from the norm will characterize effects of allostatic adaptation and 

the magnitudes of such deviations for each physiological index will be associated with 

components of allostatic load. The narrowing of the U-shape of the risk function with age 

will characterize the decline in stress resistance. The dynamic model must include a 

feedback mechanism with coefficients of homeostatic regulation. The age-related 

changes in these coefficients will characterize the decline in adaptive capacity. To meet 

these requirements, we suggest the stochastic process model for continuously changing 

risk factors in the form of stochastic differential equation: 

 ( )1 0( ) ( ) ( ) ,t t tdY a t Y f t dt b t dW Y= − + . (1) 
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Here Yt (t is age) is a k-dimensional stochastic process describing continuously changing 

vector of risk factors (e.g., physiological characteristics), which approximates a human 

organisms’ functional state, Wt is a vector Wiener process with independent components, 

which describes exogenous challenges affecting these covariates. The process Wt is 

independent of the initial vector Y0 with normally distributed components. The strength 

of disturbances of Wt is characterized by a matrix of diffusion coefficients b(t). The 

vector-function f1(t) has a meaning of a mean functional state (having the same 

dimension as a vector Yt) of an organism subject to allostasis [34], i.e., it describes the 

age trajectory of a functional state that organisms are forced to follow by the process of 

adaptive regulation. This trajectory reflects aging-related changes in the organism’s 

functioning due to the average effect of a complicated interplay among the ontogenetic 

program, senescence, and environmental stresses exceeding limits of the homeostatic 

regulation in human organisms. The matrix a(t) characterizes the rate of adaptive 

regulation. Specifically, the elements of matrix a(t) regulate age trajectories of the 

components of the physiological state approximated by the vector Yt, i.e., the elements of 

matrix a(t) characterize the rate of the adaptive response for any deviation of a 

physiological index from the state f1(t) which an organism tends to follow. The process Yt 

can be stopped randomly at time T. The conditional distribution of T given trajectories of 

, 0uY u t≤ ≤  is completely characterized by the conditional hazard ( )tYt,µ , which is 

assumed to be: 

 ( ) ( ) ( )*

0, ( ) ( ) ( ) ( )t t tt Y t Y f t Q t Y f tµ µ= + − − . (2) 

Here ( )t0µ  is the background hazard characterizing the residual mortality rate, which 

would remain if a vector of covariates Yt follows the optimal trajectory coinciding with 
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f(t). Matrix Q(t) is the non-negative-definite symmetric matrix of respective dimension. 

The vector-function f(t) is introduced to explicitly characterize age-related changes in the 

“optimal” physiological state corresponding to the minimum of hazard at a given age. It 

has a meaning of the age-dependent norm for a given functional state. It may differ from 

f1(t) since the process of allostatic adaptation does not necessarily results in the optimal 

physiological state. Thus, the difference between f1(t) and f(t) provides the measure of the 

allostatic load. 

2.2. Estimation procedure 

The survival function associated with the life span distribution is 

0
( ) exp( ( ) )

t

P T t u duµ> = −∫ , where  

 ( ) ( ) ( )*

0( ) ( ) ( ) ( ) ( ) ( )u u uu u m f u Q u m f u Tr Q uµ µ γ= + − − +  (3) 

is the respective hazard rate and  

 
( ) ( )1

* *

/ ( ) ( ) ( ) 2 ( ) ( ) ( ) ( ) ,

( ) / ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ).

tdm dt a t m t f t t Q t m t f t

d t dt a t t t a t b t b t t Q t t

γ

γ γ γ γ γ

= − − −

= + + −
 (4) 

Note that such a model preserves the Gaussian property: in the case of initial Gaussian 

distribution for Y0, the distribution of Yt among survivors is also Gaussian [30,31,35]. The 

model can be estimated using the maximum likelihood method. 

Let the sequence 
0 1

, ,..., ,i i i
ni

i i i

it t t
y y y τ  represent the results of measurements of the 

process Yt and the life span (which may be censored) related to the i
th
 individual. The 

likelihood function for N individuals is 

( ) ( ) ( )
{ }

*1( ) 122

1 0

0

1
2 ( ) exp ( ) ( ) ( )

2

( ) exp ( )

i i

i i i
j j j

i
i

kN n i i i i i i i i i

j j jt t ti j

i i

i

t y m t t y m t

u du

τ

τδ

π γ γ

µ τ µ

−− −

= =

 
− − − − − − − 

 

−

∏ ∏

∫

.     (5) 
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Here iδ  is a censoring indicator, ( )im t  and )(tiγ  satisfy equations (4) at the intervals 

[ ) [ ) [ ) [ )t t t t t t ti i i i

n

i

n

i

n

i

ii i i0 1 1 2 1, ; , ;...; , ; ,− τ  with the initial conditions y y y
t

i

t

i

t

i
i i

tn j

i
0 1

, ,..., , respectively. 

Here m t m ti

j

i

t t

i

j
i

( ) lim ( )− =
↑

, and )(lim)( tt i

tt

i

j

i

i
j

γγ
↑

=− , and i

in
t  is the age of the latest 

measurement of a functional state before death/censoring at iτ . Maximization of this 

likelihood function generates parameter estimates that characterize the dynamics of 

stochastic process Yt describing trajectories of physiological aging. Note that the 

observed values 
0 1

, ,...,i i i
ni

i i i

t t t
y y y  are used as initial conditions for differential equations (4) 

at the beginning of subsequent intervals between the observation times. Therefore, the 

individual trajectories of ( )im t and )(tiγ  differ for different individuals. Consequently, 

the estimates of the chances of death for individuals having different observed values of 

the respective covariates also differ. 

3. Simulation study 

We performed a simulation study to check performance of the model in one-

dimensional case. In computer simulations, we used a discrete-time version of the model 

(1)-(2). We assumed that the baseline mortality in (2) is the Gompertz hazard, 

( ) ( )min0

00

b t t
t a e µ

µµ −
= , where tmin = 30. The trajectories f1(t) and f(t) are approximated by 

linear functions, ( ) ( )
1 11 minf ff t a b t t= + − , ( ) ( )minf ff t a b t t= + − . The functions a(t) and 

b(t) are assumed to be constant, ( ) Ya t a= , ( ) 1b t σ= . The initial distribution of 
0t
Y  is 

normal with mean ( )1 0f t  and variance 2

0σ . We considered the case of non-symmetric 

dependency of mortality on deviations of values of the process Yt from the trajectory f(t), 
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assuming that ( )
( ) ( )
( ) ( )

11

12

, if

, if

t

t

t Y f t
Q t

t Y f t

µ

µ

≤
= 

>
, where ( ) ( )

1 11 minj jj t a b t tµ µµ = + − ,  j = 1, 2. 

Parameters to be estimated in this model are: 
0

aµ , 0
bµ , 11

aµ , 11
bµ , 12

aµ , 
12
bµ , Ya , 0σ , 1σ , 

1f
a , 

1f
b , fa , and fb . The age at entry into the study was simulated as a discrete random 

variable uniformly distributed over the interval from 30 to 60 years. The interval between 

observations of tY  equals 2 years. The number of observations (surveys) is 25. This 

structure resembles the Framingham Heart Study (FHS) data [36]. The simulated values 

of parameters were taken similar to those obtained in our preliminary analyses of data on 

diastolic blood pressure for females in the FHS. We simulated 100 data sets with 2500 

individuals in each data set (which is approximately equal to the number of females in the 

FHS data) and estimated the discrete model for different data sets using the MATLAB’s 

optimization toolbox [37,38]. Mean values, standard deviations and 95% range of the 

estimated parameters are presented in Table 1.  

Table 1 is about here 

The estimated age trajectories of ( )0ln tµ , ( )11 tµ , ( )12 tµ , ( )1f t , ( )f t  and the initial 

distribution of 
0t
Y  ( ( )

0t
p Y ) for 100 simulated data sets are shown in Fig. 1.  

Fig. 1 is about here 

The table and the figure show that the parameters related to the dynamics of tY  

( Ya , 0σ , 1σ ,
1f
a ,

1f
b ) and the baseline mortality (

0
aµ , 0

bµ ) are estimated better than those 

related to the optimal trajectory f(t) ( fa , fb ). For example, the standard deviations of fa  

and fb  are about five times larger than those of 1f
a  and 

1f
b . As the result, the trajectories 
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of ( )1f t  are estimated better than ( )f t . Nevertheless, the means of all parameters are 

close to the true values. Fig. 2 illustrates the estimated (mean for 100 data sets) and true 

mortality ( ( ), tt Yµ ) and relative risk ( ( ), tRR t Y ) over age (t) and values of tY .  

Fig. 2 is about here 

The figure shows that both estimated and true parameters specify two key features of 

dependence of mortality and relative risk on age and values of tY : the narrowing of U-

shape of mortality and the decrease in the relative risk with age. 

4. Discussion 

Many researchers involved in population studies of aging and longevity consider 

mortality curves as an important source of information about the rate of individual aging. 

In particular, the slope of the logarithm of the mortality curve is often associated with the 

aging rate. Such interpretations may be misleading: the changes in the slope and in many 

other features of mortality curve may occur because of many other reasons, which have 

nothing to do with the aging process [39]. Moreover, in situations characterized by the 

wide spectrum of longitudinal data and findings on regularities of biological and 

physiological changes in aging organisms, making speculations about the meaning of 

different properties of the mortality curve and ignoring the presence of other relevant 

information about aging would be methodologically incorrect.  

The urgent need for modifying a traditional experimental paradigm that associates 

the features of individual aging with properties of the age pattern of the mortality curve 

without developing an appropriate biological background has been also emphasized by 

Manton and Yashin [33]. The urgency stems from the lack of balance between data and 

theory currently existing in the area of research on aging: the abundance of the data and 



 11 

findings about aging and the development of aging-related disorders in humans and 

laboratory animals on the one hand and the weakness of methodological and theoretical 

concepts guiding the collection and analysis of data on the other hand. It became clear 

that working with data collected in human longitudinal studies of aging and longevity 

requires new models capable of not only describing mortality linked with longitudinally 

measured physiological or health indices. These models must have the ability to describe 

connections and evaluate joint effects of senescence, ontogenetic program, and 

environmental stresses in aging-related changes in health/well-being/survival 

characteristics measured in longitudinal studies.  

An important attempt to connect the Gompertz model of mortality rate with the 

model describing longitudinal data has been performed using the quadratic hazard model 

of human mortality and aging (see [33] and references therein). The conditional mortality 

rate in this model is represented in the form 

 *( , ) t

t t tt Y Y QYeθµ = %% % , (6) 

where ( )* *1,t tY Y=%  is an extended vector of covariates Yt, t is age, Q
~
 is an extended 

(constant) matrix, and θ  is the Gompertz’s parameter [33]. An asterisk means 

transposition.  

In applications of this model to longitudinal data, the estimated value of the 

parameter θ  has always been smaller than the respective parameter in the Gompertz’s 

model describing the total mortality rate evaluated for the same data. The reduction of the 

Gompertz’s growth parameter estimated in the presence of observed covariates has been 

interpreted as an effect of measurements: the new (reduced) value of parameter θ  

characterized the component of aging-related increase in the mortality rate remaining 
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unexplained in this scheme of observations (i.e., which occurred due to unobserved 

processes). The difference between the old and the new estimates of θ  characterized 

explanatory power of the observed covariates. To make this point clearer, we provide an 

equivalent formulation of the original one-dimensional quadratic hazard model 

( ) ( )( ) ( )2 2

0 1 0 1, t t t

t t tt Y Y c e e e Y cθ θ θµ µ µ µ µ= + − = + − ,                     (7) 

where 0µ , 1µ , and c are constants. The first term has been interpreted as a part of the 

Gompertz’s mortality remained after effects of observed covariates have been taken into 

account (the second term). Equation (7) clearly shows implicit assumptions used in the 

formulation of the original quadratic hazard model – a competing risks model of the 

hazard rate with two mortality components. Specifically, the first component is an 

exponentially increasing function of age. The second risk is a product of the 

exponentially increasing function of age and quadratic function of observed covariates. 

The important limitation of this model is that the exponential multipliers in both 

components of risk function are the same. The second limitation is that the minimum of 

the second (quadratic hazard) term is reached at the constant level of observed covariates.  

The model proposed in this paper is free of these two basic limitations. This can 

be seen in its one-dimensional formulation where the quadratic hazard is:  

( )20 1( , ) ( ) ( ) ( )t tt Y t t Y f tµ µ µ= + − .                                         (8) 

First, our model assumes that the minimum value of the risk function can change over 

age. This is a realistic assumption since in epidemiologic and medical practice specialists 

often operate with the notion of age-dependent “norm”, i.e., values of the physiological 

indices that are “optimal” for a given age. The “optimal” age trajectory of physiological 
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(or, more broadly, functional) state, f(t) (i.e., the trajectory for which the risk of death 

takes its minimum value), is explicitly included in the model description (compare 

equations (2) and (7)). Importance of this extension is that it allows one to statistically 

test hypotheses on an optimal physiological trajectory and, thus, rigorously justify 

respective age-dependent physiological “norms” of physiological state corresponding to 

the minimum of the hazard. The model also allows for evaluating the “price” for 

deviations from this norm in terms of mortality increase at different ages. 

Second, our model distinguishes between the contribution of an additive term 

)(0 tµ  and the multiplier of the quadratic hazard )(1 tµ . Assuming differences between 

these functions allows for a completely new interpretation of these coefficients, which 

clarify the contribution of measured indices to mortality and evaluate the effects of 

senescence on behavior of risk functions. The function )(0 tµ  can be considered as a 

component of competing risks associated with death from factors other than those 

involved in the quadratic term (i.e., unmeasured factors). The risk )(0 tµ  is supposed to be 

smaller than the total mortality calculated when observed covariates are ignored. 

Therefore, )(0 tµ  characterizes mortality remaining after all observed covariates follow 

the “optimal” trajectory and its interpretation remains similar to that used in the original 

model. Thus, this model allows us to evaluate a potential decline in the mortality rate (or 

an increase in the life expectancy) which would happen when the risk associated with all 

observed covariates is eradicated.  

The term )(1 tµ  in the new version of the model provides a completely different 

interpretation. It shows how the shape of the risk function changes with age. Since the 

quadratic hazard captures the U- (or J-) shape of the hazard considered as a function of 
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risk factors, the increasing pattern of )(1 tµ  will indicate how this shape changes with age. 

Its increase (in this case the branches of respective U-shaped risk function are getting 

steeper) indicates that the range of tolerant deviations of the resultant risk factor from its 

“optimal” value is getting narrower with age. This, in turn, is an indicator of decline in 

the stress resistance with age. Evaluating such behavior of risk functions in human data is 

extremely important to capture the connections between senescence, longevity, and 

stress-resistance. Although many aspects of such connections have been studied in 

experimental animals [9], they were not adequately addressed for humans. Thus, the rate 

of increase in )(1 tµ  (not the slope of the logarithm of the mortality curve) may 

characterize the rate of senescence. Thus, the model is transformed to the form where 

effects of senescence on survival, longevity and disease development may be evaluated. 

The modified model is more preferable from the methodological point of view because it 

includes the earlier version as a particular case, and because the similarity between )(0 tµ  

and )(1 tµ  can be easily tested using the likelihood ratio test.  

Incorporating functions f1(t), f(t) and matrix a(t) into the extended model allows 

one to test different hypotheses about aging-related changes in a human organism. For 

example, one can test whether the age trajectory of physiological state which organism is 

forced to follow by the process of allostasis (f1(t)) coincides with the “optimal” trajectory 

with the minimal mortality at respective ages (f(t)). A testable hypothesis is also the one 

that the observed mean age-trajectories of the covariates in a population coincide with the 

age-dependent norm f(t). Estimating the model with fixed and non-fixed a(t), one can test 

the hypothesis about aging-related changes in the “homeostatic capacity” of a human 

organism, i.e., how the rate of the adaptive response for any deviation of physiological 
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indices from the “prescribed” state f1(t) changes with age. Specifications of different 

forms of the matrix Q(t) allow for an analysis of relationships between covariates and 

evaluation of their joint effects on the mortality risk.  

Contrary to the traditional association of the aging rate with the slope of the 

logarithm of the mortality curve, it seems more appropriate to relate the rate of decline in 

stress resistance with this process. Our analysis shows that such a rate can be evaluated 

from the longitudinal data. The performed analysis shows that the proposed model can be 

effectively used for evaluating features of the aging-related changes from data collected 

in longitudinal studies. 
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Fig. 1: Estimated trajectories (grey lines) of ( )0ln tµ  (left top panel), ( )11 tµ  (right top 

panel), ( )12 tµ  (left middle panel), ( )1f t  (right middle panel), ( )f t  (left bottom panel) 

and ( )
0t

p Y  (right bottom panel) for 100 simulated data sets. True trajectories are shown 

as black lines.  
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Fig. 2: Estimated (mean for 100 data sets) and true mortality ( ( ), tt Yµ ) and relative risk 

( ( ), tRR t Y ). Thick lines denote the “optimal” age trajectory of a physiological index 

(f(t)). 
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