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Abstract

In recent years most industrialized countries have allocated increasing
shares of their GDP to health while at the same time life-expectancy
has continued to increase. The ongoing debate in health economics is
on whether too much is spent on health care. In this paper we offer
a framework that allows to determine how a social planner as opposed
to an individual allocates resources to consumption vs. the provision of
health care over the life cycle assuming that health care positively affects
longevity. Applying the concept of the willingness to pay for mortality
reductions, we derive the social versus private value of life.

1 Introduction

In recent years most industrialized countries have allocated increasing shares of their
GDP to health. In the US health expenditures share in GDP increased from 5 % in
1970 to 15-16 % in 2000. Similar increases can be observed in Germany and Japan
where health expenditure’s share in GDP increased from 6 % in 1970 to 11 % in 2000
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for Germany and from 3 % in 1950 to 7-8 % in 2000 for Japan (see Bergheim [1]).
At the same time life-expectancy has continued to increase. Whereas increasing
life-expectancy is more than welcome as such, a debate is continuing on whether
or not too much is being spent on health care. This begs two questions: (i) what
motivates individuals to invest in reductions in mortality and to what effect? (ii) Do
they get it right from a social welfare point of view? We seek to provide an answer
to these questions by combining two models:

1. an age structured optimal control model, where a social planner maximizes
welfare (i.e. individual utilities aggregated over time and age groups). This
model determines the socially optimal pattern of consumption and health in-
vestments.

2. a life-cycle model, where an individual maximizes life-time utility. This model
determines the individual pattern of consumption and health investment.

Solving and simulating models (1) and (2) and comparing the respective pat-
terns of consumption and health investment we can deduce conclusions about the
inefficiencies in individual behavior and where they arise.

Our model of individual behaviour (model (2)) is closely related to the work of
Ehrlich and Chuma [4], Ehrlich [3] and Hall and Jones [9]. As argued in Ehrlich
and Chuma [4] (p. 762) ”the observed diversity in age specific life expectancy over
time and across different population groups ”may be due not just to the influence
of exogenous biological or technological factors but also to systematic variations
in individuals’ demand for longevity.” To determine the demand for longevity an
intertemporal setting is needed where the demand function for longevity can be
modelled along with the demand function for health investment and consumption.
The seminal work on the demand for health is Grossman [8] who models longevity
as the outcome of health capital that in turn is produced by health investments.

Similar to Ehrlich [3] the individuals maximize the discounted stream of utility
obtained from consumption over their life cycle by choosing how much to spend
on health care and consumption subject to their individual budget constraint. We
ignore quality of life that also enters the objective function in Ehrlich [3]. Ehrlich
and Chuma [4] assume that the stock of health has two functions: firstly, it aug-
ments the amount of healthy time and secondly, it delays the approach of death
since the latter is assumed to occur automatically once the health stock drops to
a critical minimum level. The health stock can be maintained or augmented by
investment and depreciates over time. In our model we ignore the first channel and
only concentrate on the reduction in mortality through health investment. Similar
to Ehrlich [3] we assume that health care affects mortality.

In our model 1, we consider a social planner that maximizes the discounted
stream of utility of the population by choosing age specific health investment and
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consumption subject to an economy-wide budget constraint. In this case we need to
model the evolution of the total population. We refer to the McKendrick equation
in demography to model the evolution of population size over time and age. Similar
to the individual optimisation problem, health spending enters negatively the age
specific mortality function. Moreover, in the social planner model we introduce age
in addition to time as a second dynamic variable. Health care spending is therefore
age and time specific in our model.

Within our model framework we can then determine how a social planner as
opposed to an individual allocates resources to consumption vs. health investment
over the life cycle assuming that health investment positively affects longevity. In
particular, by introducing age as a second dynamic variable in addition to time, we
are able to study the age patterns of the optimal health investment and consump-
tion paths as endogenously determined by the population structure and age specific
productivity (we assume that output is produced by labor only where workers of
different ages are adjusted for their different productivity). Differences between
the planners and individual’s investment/consumption patterns indicate a potential
need of policy intervention.

By applying the optimality conditions of age structured optimal control models
(Feichtinger, Tragler and Veliov [6]) we can derive the social optimal age specific
consumption and health investment profile. The social optimum is determined by
equalizing the marginal consumption to the marginal social benefit of an increase in
the population by one member through a reduction in mortality. A measure com-
monly applied in the life-cycle models (also in connection with health investments)
is the willingness to pay for a small reduction for mortality (Rosen [14]), termed the
Value of Life (VOL). Our framework allows us to derive the Social VOL (SVOL) as
a function of the value of one more individual at age a and time t multiplied by the
number of people and divided by the marginal utility of consumption to obtain a
monetary value of SVOL. We also offer an intuitive explanation of the value of one
more individual at age a and time t and show its close connection to the reproductive
value concept in demography.

For the individual optimum we can derive similar results. In the optimum the
marginal utility of consumption is set equal to the marginal private benefit of health,
i.e. the benefit from a decrease in mortality. Similar to the SVOL we can derive a
PVOL (Private value of life) that indicates the willingness to pay for an additional
life year. The PVOL turns out to be equal to the marginal costs (in terms of foregone
consumption) of a life year.
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2 The Social Welfare Model

The dynamics of the population is described by the McKendrick equation (see Key-
fitz [12])

Na + Nt = −µ(a, h(a, t))N(a, t) N(0, t) = B(t), N(a, 0) = N0(a) (1)

The state variable N(a, t) represents the number of a-year old individuals at time
t. The age specific mortality rate µ(a, h(a, t)) trivially depends on age a and can
be reduced instantaneously by providing to the individual an age specific amount
h(a, t) of health care (or other health enhancing goods and services). Here, h(a, t) is
a distributed control variable in our model. We model the mortality rate according
to the proportional hazard model (see Kalbfleisch and Prentice [11])

µ(a, h(t, a)) = µ̃(a)φ(h(a, t)) (2)

where µ̃(a) denotes the base mortality rate (effective in the absence of any health
care) and φ(h(a, t)) describes the impact (efficiency) of health spending. We assume
that φ(h(a, t)) is a strictly decreasing concave function satisfying the Inada condi-
tions, i.e. φh < 0, φhh > 0, φ(0) = 1 and φh(0) = −∞1. Note, that the proportional
hazard model implies that the effectiveness of health care in reducing mortality
increases in the hazard rate of mortality.

N0(a) describes the initial age distribution of the population and B(t) equals the
number of newborns at time t defined as

B(t) =

∫ ω

0

ν(a)N(a, t) da (3)

where ν(a) denotes the age specific fertility rate.
The second control variable is consumption c(a, t). The nonnegativity assump-

tion is trivially fulfilled, as we assume limc→0+ uc(c) = +∞ for the utility function.
The objective of the social planner is to maximize the social welfare, which is defined
as the sum of the instantaneous utilities of all individuals (total utilitarianism)

∫ T

0

∫ ω

0

e−ρtu(c(a, t))N(a, t) da dt (4)

where ω is the maximal age an individual can reach. This is no restriction to the
model if ω is chosen big enough. u(c(a, t)) represents the per capita instantaneous
utility, which depends only on consumption and is assumed to be concave in its
argument. In some life-cycle models utility might also depend on health (quality
of life). However, in our approach health care only influence the mortality (e.g.

1Thus the usual assumption of nonnegative health investments is not necessary.
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vaccination) and not the quality of life (e.g. glasses or contact lenses) or even both
(e.g. medicines that reduce blood pressure). ρ denotes the (social) rate of time
preference. Note that we also allow for an infinite planning horizon T = +∞ at this
stage.

Finally we assume that the budget condition needs to be balanced over the plan-
ning horizon T . This is expressed by the introduction of savings (of the economy)
S(t) and the following dynamics

Ṡ(t) = rS(t) + Y (t)− C(t)−H(t) S(0) = S(T ) = 0 (5)

with

Y (t) =

∫ ω

0

p(a)N(a, t) da

C(t) =

∫ ω

0

c(a, t)N(a, t) da

H(t) =

∫ ω

0

h(a, t)N(a, t) da (6)

r denotes the interest rate that is exogenous to the economy, p(a) denotes the
productivity of an a-year old individual and Y (t) and C(t) total output and con-
sumption, respectively. We assume that health care is purchased at a relative price,
which we normalize to one. Thus, h(t) and H(t), respectively, correspond to per
capita and aggregate health expenditure. The economy starts and ends up with zero
savings.

The formal problem of the social planner is then to choose the age specific sched-
ule of consumption and health expenditure (health care) to maximize the sum of
instantaneous utility of all individuals. Discounting the future at the rate ρ we come
up with the following dynamic age-structured optimization problem with state vari-
ables S(t) and N(t) and control variables c(a, t) and h(a, t).
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max
c,h

∫ T

0

∫ ω

0

e−ρtu(c(a, t))N(a, t) da dt

s.t. Na + Nt = −µ(a, h(a, t))N(a, t)

N(0, t) = B(t) =

∫ ω

0

ν(a)N(a, t) da

N(a, 0) = N0(a)

µ(a, h(a, t)) = µ̃(a)φ(h(a, t))

Y (t) =

∫ ω

0

p(a)N(a, t) da

C(t) =

∫ ω

0

c(a, t)N(a, t) da

H(t) =

∫ ω

0

h(a, t)N(a, t) da

budget: Ṡ(t) = rS(t) + Y (t)− C(t)−H(t)

S(0) = S(T ) = 0 (7)

In the following section we derive the necessary optimality conditions of the above
age specific control problem (see Feichtinger, Tragler and Veliov [6] for details).
Further we provide economic interpretations of important expressions.

3 Optimality conditions and the social value of

life

To obtain necessary optimality conditions we apply the maximum principle for age-
structured control models as recently derived in [6].

We define the Hamiltonian of the social welfare problem as follows: (from now
on we omit a and t if they are not of particular importance)

H = u(c)N−ξNµ(a, h)N +ξS(rS+Y −C−H)+ηBνN +ηY pN +ηCcN +ηHhN (8)

where we denote the adjoint variables that correspond to the state variables as
follows:

• ξN(a, t) . . . population

• ξS(t) . . . savings

• ηB(t) . . . newborns
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• ηY (t) . . . output

• ηC(t) . . . total consumption

• ηH(t) . . . total health expenditure

such that the following system is satisfied

ξN
a + ξN

a = (ρ + µ(a, h))ξN − u(c)− ηBν − ηY p− ηCc− ηHh

ξ̇S = (ρ− r)ξS

ηB = ξN(0, t)

ηY = ξS

ηC = −ξS

ηH = −ξS (9)

together with

ξN(ω, t) = 0 (10)

If T < +∞ we further have ξN(a, T ) = 0. The necessary first order conditions
are

Hc = uc(c)N + ηCN = 0 (11)

Hh = −ξNµh(a, h)N + ηHN = 0 (12)

After combining them we obtain

uc(c)N = −ξNµh(a, h)N (13)

This equation can be interpreted in a straight forward manner. The left hand
side equals the increase of social welfare if c(a, t) is increased by a small (marginal)
unit. The right hand side is the product of the adjoint variable of the population
ξN and µh(a, h). As usual ξN can be interpreted as shadow price and is therefore
equal to the increase of the value function (i.e. social welfare) for a small (marginal)
increase of N(a, t). −µh(a, h)N equals the value of the number of lives saved through
a marginal increase of h(a, t). Therefore the right hand side represents the increase
of social welfare if health expenditure is increased by a small (marginal) unit. In an
optimum both sides must be equal. Or, writing uc(c) = −ξNµh(a, h), the marginal
utility of consumption equals the marginal value per-capita of a health care spending.

From (9) and (11) we get uc(c) = ξS. This equation implies that the consumption
at each point in time t is equal over all ages a, as the shadow price of savings only
depends on time t and not on age a.
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The change in consumption of a cohort born at t − a can be expressed by the
following formula (obtained by calculating the directional derivative of (13))

ca + ct =
uc(c)

ucc(c)
(ρ− r) (14)

If the discount rate equals the international market interest rate the above for-
mula is zero implying consumption smoothing over the whole life. If the discount
rate exceeds the international market interest rate the formula is negative, because
of the concavity of the utility function. Thus the consumption will decrease over
the life-cycle, which reflects the impatience of the individuals is greater than the
interest rate. In the case of r > ρ the interpretation is the other way around, i.e.
consumption increases over the life cycle.

Therefore in general the consumption will not be smoothed over all periods and
all ages, although this would be possible for the social planner. All in all it can be
concluded that consumption does not differ across age groups at one point in time,
but increases (ρ < r), decreases (ρ > r) or stays constant (ρ = r) over the entire
planning horizon (and the life-span of every single individual).

Finally we calculate the willingness to pay for a small reduction of the mortality
rate for age a at time t. To our knowledge this concept was firstly dealt with in a
formal manner in Rosen [14] who applied the value of life (VOL) concept to a single
individual in a life cycle model. As our approach uses a macro economic setting we
term it consequently social value of life (SVOL). Before we discuss the differences
between the VOL and the SVOL we derive an analytic expression for the SVOL.
Analogously to Rosen [14] the SVOL, denoted by ΨS(a, t), equals

ΨS(a, t) = −∂V/∂µ

∂V/∂S
(15)

where V denotes the value function, i.e. optimal social value. This formula
expresses the marginal rate of substitution (MRS) between mortality and social
wealth, which describes the slope of the indifference curve including all combinations
of µ(a, h(a, t)) and S(t) with the same social welfare. The denominator equals the
shadow price of savings ξS. For the numerator we obtain

∂V

∂µ
=

∂V

∂N

∂N

∂µ
= −ξN(a)N(a) (16)

The second equality can straightforwardly be verified by solving the partial dif-
ferential equation for N by the method of characteristics. Putting the above two
expressions together we obtain

ΨS(a, t) =
ξN(a, t)N(a, t)

ξs
=

ξN(a, t)N(a, t)

uc(c)
(17)
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The value ξN of one more (more precisely: marginally more) a-year old individual
at time t is multiplied by the number of them N , as only such individuals will benefit
from a reduction of the mortality rate in this specific age at that time. This value
is devided by the marginal utility, such that the SVOL is expressed in monetary
values.

The change of the SVOL within one cohort born at time t− a is given by

ΨS
a + ΨS

t = rΨS −N
(u(c) + ηBν

uc(c)
+ (p− c− h)

)
(18)

Both terms are similar in structure to the expression in equation (34) (first line)
in Rosen [14] (or, similarly, to the equation just above equation (10) in Murphy and
Topel [13]). The SVOL for this particular cohort tends to increase (along the Lexis
Diagram) if discounted future surplus (the first term) exceeds the current social
surplus of this cohort (the second term). Here, the current social surplus amounts
to the per-capita surplus (monetary value of utility + reproductive value + net
productive value) multiplied by the number of cohort members alife in year t.

4 Analogy of the shadow price of population to

the reproductive value

In this section we discuss an interesting interpretation of the shadow price of the
population ξN(a, t) from a demographic point of view. Remember the first equation
of (9) representing the evolution of ξN(a, t) for one cohort born at t− a (45 degree
line in the Lexis diagram). Together with the terminal condition ξN(ω, t) = 0 this
partial differential equation can be solved with the method of characteristics. We
obtain

ξN(a, t) =

∫ ω

a

(
u(c) + ξN(0, t− a + s)ν(s) + ξS(p− c− h)

)
e−ρ(s−a)−∫ s

a µ(a,h) ds′ ds(19)

This expression can be decomposed into two effects, a direct and an indirect one,
i.e.

ξN(a, t) =

∫ ω

a

e−ρ(s−a)
(
u(c) + ξS(p− c− h)

)
e−

∫ s
a µ(a,h) ds′ ds +

+

∫ ω

a

e−ρ(s−a)ξN(0, t− a + s)ν(s)e−
∫ s

a µ(a,h) ds′ ds (20)

The direct effect (first integral) is the sum of the instantaneous utility of con-
sumption u(c) (at age s and time t−a+s) and the net contribution to social welfare
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by one individual ξS(p−c−h) (if p−c−h > 0: the individual adds to social welfare
as its contribution to production outweighs its consumption and health investment,
and vice versa for p − c − h < 0) both weighted by the discount factor and the
survival probability and aggregated over the remaining lifespan of one individual.
Therefore the direct effect describes the additional social welfare (for one individual
itself and for others) that is generated by preserving the life of one individual.

The indirect effect (second integral) equals the shadow price of a newborn in-
dividual at time t − a + s times the fertility rate of an s-year old individual again
weighted by the discount factor and the survival probability and aggregated over the
remaining lifespan. Consequently it measures the expected social welfare generated
by the descendants of an additional individual of age a at time t.

Interestingly the indirect effect is a generalization of the reproductive value v(a)
(see Fisher [7]), which is a well known concept in demography and defined in the
following way2

v(a) =

∫ β

a

e−r(s−a) l(s)

l(a)
m(s) ds (21)

Here l(s) denotes the probability to survive until age s, thus l(s)
l(a)

denotes the

survival probability between ages a and s and is equivalent to the term e−
∫ s

a µ(a,h) ds′

in our indirect effect. m(s) denotes the fertility rate of age s and equals trivially
our ν(s). As β denotes the oldest age of child bearing the only difference in both
expressions is the shadow price of one additional newborn, which does not occur
in (21). This difference arises from the fact that (21) measures the reproductive
value in amounts of individuals, i.e. one individual has value 1. Our indirect effect
is expressed in additional units of utility and thus multiplied by ξN(0, t − a + s).
Consequently it measures the expected social welfare generated by the descendants
of an additional individual. Now it is obvious that we have obtained a generalization,
when ξN(0, t− a + s) denotes the value of an additional newborn depending on the
measure (e.g. number of individuals in the classical representation and units of
utility in our model).

5 Individual Choice Model

In this section we briefly introduce an individual choice model, as we aim at a
comparison between the social optimal age specific consumption and health care
spending and that of an individual choice model.

Each individual earns wage w(a), which is assumed to be equal to age specific
productivity p(a). Savings (again with interest rate r) over time are allowed as long

2Note that in this formula we use demographic notation.
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as they are nonnegative. This reflects a scenario in which individuals cannot pool
their mortality risks, e.g. through the purchase of life insurance. Credit market
institutions will then usually not allow individuals to die with a negative net wealth
(Yaari [16], Ehrlich [3]). Hence, individual wealth develops according to

Ṡ(a) = rS(a) + w(a)− c(a)− h(a) S(0) = 0, S(a) ≥ 0. (22)

Disregarding planned-for bequests, we obtain S(ω) = 0 The probability of
surviving to age a (modelled analogously to the social planner problem) equals

exp
(−

∫ a

0

µ(s, h) ds
)

(23)

with µ(a, h(a)) = µ̃(a)φ(h(a)), where all functions and variables have the same
meaning as in the social welfare model, but here only evolving over age. We further
assume uc(c) > 0 and limc→0+ uc(c) = +∞.

The individual then maximizes utility by choice of consumption and the pro-
curement of health care according to

max
c,h

∫ ω

0

e−ρau(c(a))e−
∫ a
0 µ(s,h(s)) ds da

s.t. Ṡ(a) = rS(a) + w(a)− c(a)− h(a) S(0) = 0, S(a) ≥ 0, S(ω) = 0

µ(a, h) = µ̃(a)φ(h(a)) (24)

Note that the restriction c(a) ≥ 0 and h(a) ≥ 0 is again not necessary, because
of the assumption concerning the shape of u(c) and φ(h).

The survival probability can also be formulated as state M(a) with initial con-
dition M(0) = 1. Thus the control problem can also be formulated as

max
c,h

∫ ω

0

e−ρau(c(a))M(a) da

s.t. Ṁ(a) = −µ(a, h(a))M(a) M(0) = 1

Ṡ(a) = rS(a) + w(a)− c(a)− h(a) S(0) = 0, S(a) ≥ 0, S(ω) = 0

µ(a, h) = µ̃(a)φ(h(a)) (25)

The Lagrangian of this problem reads (again omitting a if it is not of particular
importance)

L = u(c)M − λMµ(a, h)M + λS(rS + w − c− h) + λS (26)

where λM and λS are the adjoint variables of the survival probability and individ-
ual savings respectively. λ denotes the Lagrangian multiplier of the nonnegativity
constraint of S(a).
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From the necessary optimality conditions we can derive the following system of
adjoint variables:

λ̇M = (ρ + µ(a, h))λM − u(c)

λ̇S = (ρ− r)λS − λ (27)

together with the first order condition:

Lc = uc(c)M − λS = 0

Lh = −λMMµh(a, h)− λS = 0 (28)

We again combine them and obtain

uc(c) = −λMMµh(a, h) (29)

where λM denotes the shadow price of survival. The interpretation is analogous
to that of the social welfare model. The change in consumption over the life cycle
is given by

ċ =
uc(c)

ucc(c)
(ρ− r + µ(a, h))− λ

Mucc(c)
(30)

where λ is the Lagrangian multiplier of the constraint S(a) ≥ 0. According to
the complementary slackness condition λ is zero, whenever S(a) > 0, i.e. if S(a) is
not at the boundary. For the interpretation consider λ = 0. Then the consumption
path is equal to that of the social welfare problem for one cohort except that the
mortality rate is additionally added in the bracket. So if ρ > r consumption will
decrease over the life-cycle even faster than in the social welfare problem because
of the mortality rate. If ρ = r consumption will decrease. And if ρ < r the effect
is not clear. For a very low mortality rate (e.g. in younger years) consumption will
still increase (as in the social welfare model). But when mortality is high enough
(to fill the gap between ρ and r) consumption will decease in this case.

Thus the above expression includes two effects. Firstly ρ− r describes, whether
the impatience is greater than the market interest rate. And secondly the mortality
effect, which can outweight high patience or increase impatience. The mortality rate
therefore counts for the effect of a decreasing survival probability, as an individual
cannot be sure to be able to consume its savings (which is the main difference to
the social welfare problem).

If S(a) is on the boundary λ ≥ 0 (nonnegativity complementary slackness con-
dition), which implies that the last term is negative. Thus the consumption path
decreases more or increases less (depending on the first term), as it would without
the nonnegativity constraint.
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The private value of life (PVOL) (calculated according to the approach of Rosen [14]),
denoted by ΨP , equals3

ΨP =
λM

uc(c)
(31)

The private value of life or, equivalently, the value of an additional life-year,
amounts to the monetary value of the discounted stream of future utility. Using
the first-order conditions it is also readily verified that ΨP = λM

uc(c)
= −

µh(a,h)
.

Hence, individuals choose the amount of health care that equalises the PVOL with
the effective marginal cost of extending life. Note that this cost decreases in the
effectiveness of health care (in reducing mortality), i.e. in µh(a, h).

Using the above, we obtain the change of the PVOL of one individual

Ψ̇P = rΨP − u(c)

uc(c)
+

λ

uc(c)M
ΨP (32)

Considering the first two terms on the RHS, there is an obvious analogy to the
SVOL. The PVOL increases if the discounted and monaterized stream of futrue
utilily exceeds the present monetary value of utility and vice versa. Note, however,
that in contrast to the social planner, individuals do not take into account neither

their net productive value p− c− h nor their reproductive value νηB

uc(c)
. This reflects

their pure selfishness. If the constraint on positive net wealth is binding, i.e. if λ > 0,
this tends towards increasing PVOL over time, as individuals expect a greater scope
for consumption in the future (when they are less credit constrained).

6 Numerical Results

For the numerical results we use the following functional specification

u(c(a, t)) = b +
c(a, t)1−σ

1− σ

φ(h(a, t)) = 1−
√

h(a, t)

z
(33)

where b = 5, σ = 2 and z = 3. Further we choose ρ = r = 0.04 for the subjective
discount rate and the market interest rate respectively. The simulation starts at
age 19 and ends at the maximal life-span ω = 110. We assume an exogenous
number of births, i.e. B(t) = B. Consequently the indirect effect of the shadow
price of population (introduced in section 4) is zero as ηB = 0. Mortality rates for

3Rosen [14] and several other papers use the term value of life. However, we use PVOL in order
to distinguish it from the SVOL.
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Germany have been taken from the human mortality data base [2] for the years
1990-2000. Further we separated the risk hump around age 20 from the natural
mortality and assume that the mortality due to very risky behaviour in this age group
cannot be influenced by health investments. Thus for the numerical calculations we
use µ(a, h) = µ̃(a)φ(h) + µ̄(a), where µ̃(a) and µ̄(a) are the base mortality and
the risk hump4 respectively. The age-specific productivity has been taken from
Skirbekk [15], who calculates the weighted average over 6 age dependent abilities
(numerical ability, managerial ability, clerical perception, finger dexterity, manual
dexterity, experience). Consequently the productivity profile does not represent the
productivity for a special profession, but the average over (more or less) all of them.
The profile is plotted in figure 1. All our results are calculated in a stable population
scenario with an exogenous constant number of births.

20 40 60 80 100

0.5

1

1.5

age

productivity

Figure 1: age-specific productivity profile

First we discuss the age-specific consumption and health investments. In the left
panel of figure 2 we plot a comparison of the age-specific consumption of the social
welfare model and the individual choice model. In addition we have included the age
profile of productivity (which is equal to the wage of the individual choice model).
The consumption in the social welfare is flat across age groups, reflecting the so-
cially efficient distribution of consumption across time as we assume ρ = r. The
consumption of the individual is hump shaped, it closely follows the productivity age

4µ̄(a) is positive around age 20 and zero otherwise.
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schedule in the young and old age ages, where individuals are credit constrained. In
mid ages consumption is below the productivity schedule indicating positive savings.
In this region the individual consumption profile is driven by the objective of con-
sumption smoothing, which is modified, however, by the lack of insurance against
unexpected mortality. Indeed, the decrease in consumption from ages 62 onwards is
caused by the increasing probability of mortality against which individuals cannot
insure themselves in our model.5

The comparison of health care expenditure is plotted in the right panel of fig-
ure 2. It is interesting to note that individual health care spending exceeds the
social planner’s spenidng at younger ages and falls short of the social optimum at
higher ages. Over-spending on the part of individuals during their youth can be
explained by their desire to ensure survival up to and during those ages (up to their
early 80s) in which they enjoy high levels of consumption. The subsequent drop in
individual health care expenditure as opposed to what would be socially optimal
can be explained by two factors (relating to the PVOL as opposed to the SVOL):
Firstly, in the absence of insurance they discount the PVOL for increasing risk of
mortality. Secondly, the strongly reduced scope for consumption at old ages in the
individual model (as opposed to the social optimum) drives down even more their
value of surviving into the future.6

Finally we plot the PVOL (left) and the SVOL (right) in figure 3. The PVOL
increases for the first years and decrease after a peak, which equals to the age at
which consumption starts to decrease in Figure 2.

The SVOL is driven by two factors, i.e. the shadow price of population and the
density of the population, which are both decreasing in the current setting. The
marginal consumption is not crucial for the shape of the SVOL of one cohort, as
it is constant across age. The interpretation of the rapid decrease of the SVOL is
as follows. The SVOL measures the impact of changes in the mortality rate on the
social welfare. One effect (making the decrease more fast) is that changes of the
mortality rate are much more expensive for younger ages, as the base mortality rate
is considerably lower. Another effect (making the decrease more slightly) is that
a lower mortality rate increases social welfare as the surviving population will be
larger (thus producing and consuming more). It is intuitive and obvious from the
plot that the first effect dominates the second one.

5Adding actuarially fair life-assured annuities like in [10] would imply that the individual could
smooth consumption.

6Note from µh (a, t) = µ̃ (a, t)φh (h) that the marginal effect on mortality of health investments
increases with the baseline mortality µ̃ (a, t)and therefore with age. For reasons of simplicity, we
ignore in this model the age dependency of the φ−technology, where one would expect a negative
effect of age on φh at least for very high ages. We should stress, however, that while this effect
would reduce health expenditure at the highest ages, this would affect both the individual and
social pattern. The differences in expenditure which are of more material interest to us would
remain mostly unaffected.
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Figure 2: age-specific consumption (left) and health investments (right)
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Figure 3: PVOL (left) and SVOL (right)

7 Conclusions

To be done.
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