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For more than two decades investigators have examined the influence of military service 

on men’s life course trajectories, particularly educational, occupational, marital, and health 

outcomes (Elder 1974, 1986, 1987; Elder, Shanahan, & Clipp 1994, 1997; Hogan 1978a; 1978b; 

1981; Laub & Sampson 2003; Parker et al. 2001; Pavalko & Elder 1990; Sampson & Laub 1996; 

Xie 1992).  However, research on the impact of military service on mortality outcomes in later 

life has been limited.   

Studies that have examined the experiences of World War II veterans have not 

systematically considered mortality in later life as an outcome, although Elder and his colleagues 

did find that combat exposure was related to a greater risk of mortality during the fifteen years 

after WWII (Elder, Shanahan, & Clipp 1997).  Two studies of Vietnam War veterans, one based 

on U.S. data (Hearst, Newman, & Hulley 1986) and one based on Australian data (Adena et al. 

1985), have come to differing conclusions about the effect of military service during the Vietnam 

War on mortality:  the U.S. investigators concluded that veterans had a higher death rate 

primarily due to suicide and motor-vehicle accidents, while the Australian investigators reported 

no significant differences in the death rates of veterans and non-veterans.  Other studies that 

focus exclusively on veterans have found death rates in midlife among veteran populations that 

are lower than in the general population (Dalager & Kang 1997; Kang & Bullman 1996; 

Rothberg et al. 1990).  However, these analyses only considered mortality over the short term 

and they did not examine whether the effect of military service on mortality varied by race.   

In our own research using the Health and Retirement Study (London and Wilmoth 2006), 

we found that military service was associated with a greater likelihood of death over the ten-year 
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period 1992-2002.  The findings of Liu et al. (2005), which focus only on the 70+ portion of the 

HRS sample, are consistent with our research: veterans were more likely than non-veterans to die 

over the two- to three- year interval between 1993 or 1994 and 1995.  Liu et al (2005) conclude 

that these findings imply a mortality crossover prior to age 70.  However, they do not attempt to 

empirically demonstrate the validity of this claim. 

The HRS does contain data from subjects who are between the ages of 51 and 69 years, 

which could be used to determine if there is any evidence of a mortality crossover during those 

age ranges.  However, for most sample members there have been many years between the 

completion of military service and entry into the HRS sample, which creates an initial-conditions 

problem (Hsiao 1986).  First, if military service changes mortality risks during the pre-HRS 

years, then the chances of surviving from the completion of military service until the HRS 

baseline (1992) will differ between veterans and non-veterans.  Second, if there are unobserved 

within-group factors that are correlated with mortality risks, then the conditional distribution of 

these unobserved factors will differ between groups at the point of entry into the HRS sample.  

Of course, these initial-conditions problems are not unique to the HRS: they plague any analysis 

that attempts to understand mortality outcomes in later life using samples drawn from the 

population of adults who have already reached mid- to late-life.  

We address these two aspects of the initial-conditions problems in two ways.  First, we 

employ nonsample information—in particular, estimates of pre-HRS survivorship based upon 

decennial Census data—to adjust mortality models estimated using HRS data.  Second, we 

develop cohort mortality models that explicitly represent unmeasured heterogeneity, using the 

analytic machinery of fixed-frailty mortality dynamics (Vaupel, Manton, & Stallard 1979; 

Vaupel & Yashin 1985).  The findings will test the robustness of previous findings based on the 
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HRS data regarding mortality differences by veteran status and provide insight in the existence 

of a mortality crossover between veterans and non-veterans.  In addition, the methodology 

developed in this paper will have implications for other analyses that rely on data collected from 

older subjects. 

Data and Methods 

Health and Retirement Data 

 This analysis uses data from the Health and Retirement Study (HRS), specifically the 

original HRS cohort, whose members were ages 51 to 61 years in 1992.  We do not include 

women because military service was rare among women in this cohort: only 45 female subjects 

in the HRS cohort report military service.  We model the mortality experience of men from the 

HRS cohort over the period 1992-2002.   

Measures 

Death.  We have linked the HRS public-use data to the restricted HRS Cross-Year 

National Death Index (NDI) Cause of Death File.  Staff at the National Center for Health 

Statistics (NCHS) created the restricted file by probabilistically matching respondents known to 

be dead, or whose status was unknown, to records in the NDI.  Only reliable matches, as 

determined by the NCHS staff, are included in the file.  The file contains the date of death and 

cause of death for respondents who died between the baseline interview and 2002.    

 Using these data we first created a duration variable that measures how long each subject 

survived before dying or being censored.  For subjects who died, the duration variable is 

calculated using the first interview date and death date variables.  For subjects who did not die, 

the duration variable is based on the first interview date and the last interview date.  Then we 

created a variable that measures the status of each subject at the time recorded in the duration 
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variable.  The status variable equals 0 for censored cases and 1 for those who died.   

Military service. The military service measure is based on the respondent’s report of 

service in the military, where military service was defined as “active military service” not 

including service in the military reserves: 50.3% of the 1992 HRS sample reports having served 

in the military.  For this analysis we employ a narrower measure of military service, one that 

indicates that the respondent had entered the military by 1960. 

Race. Only whites and blacks are included in the analysis; approximately 16% of our 

sample is black. 

Decennial Census Data 

 Our analysis employs estimates of group-specific survival probabilities based on samples 

from the public-use files of the 1960 and 1990 Censuses.  Together these data sources allow us to 

compute 30-year survival probabilities that cover much of the period between the completion of 

military service and enrollment in the HRS study.  In order to use the Census data, it is essential 

that a consistent measure of military service be applied in all these data sources.  Specifically, we 

need to classify men as veterans or non-veterans as of 1960.  This, in turn, leads us to further 

restrict our analysis to the oldest half of the HRS cohort, namely the men born 1931-1935.  

Those men fall into the 25-29 age group in 1960, the 55-59 age group in 1990, and the 57-61 age 

group in 1992, at the start of the HRS study.  Each Census file includes indicators of military 

service in each of several distinct peacetime and wartime periods.  We coded men as “veterans” 

in 1960 if at that time they had previously served in the military or were, at the time of the 

Census, serving in the military.  In the 1990 data, men were coded as veterans if they indicated 

service in World War II, the Korean War, the period 1955-1964, or an “other” period which, 

given the response categories available in the 1990 Census, is limited to the interwar years 1948 
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and 1949.  Although the method requires that the variable “veteran” be consistently coded in 

both Censuses, we have little choice but to include the decade-spanning response field 1955-

1964 in our “veteran” category in 1990.  However, in order for someone in the 55-to-59 age 

group in 1990, whose military service falls within the 1955-64 period, to have served exclusively 

after 1960, he would have had to join the military for the first time after age 25, a relatively 

unlikely occurrence. 

Analysis Sample 

 In order to maximize comparability of the three samples used in this analysis, we 

restricted the samples to native-born men.  Our samples of native-born white and black males 

born during 1931-1935 include 1773 men from the HRS cohort, 50,641 from the 1960 Census 

and 44,703 from the 1990 Census.  The counts of HRS respondents by racial, veteran, and vital 

status appear in Table 2, below. 

Mortality Models 

 To date, we have estimated a number of group-specific mortality models. The novel 

feature of the work reported here is the use of external information from the Census data analysis 

to impose constraints on the HRS mortality models.  Here we describe the modeling framework, 

as applied to a single such group; we first consider a “marginal” model in which unmeasured 

heterogeneity is ignored, and then a model that explicitly represents unmeasured heterogeneity. 

Model without heterogeneity 

 For each possible grouping of our data—all men; whites and blacks considered 

separately; white non-veterans (WN), white veterans (WV), black non-veterans (BN) or black 

veterans (BV), considered separately—there is a baseline hazard, h(a), a cumulative (integrated) 

hazard, 
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provided that b1 ≠ 0.  The chances of dying at age a are given by the product h (a)S(a). 
 

In order to align the HRS data with the Census data, we replace age with a*, which 

equals time elapsed since 1960.  In 1960, then, a* = 0 (when the men in our HRS sample are, on 

average, roughly 27.5 years old).  In the HRS data, which span the period 1992-2002, we 

observe deaths in the range a* = 32 to a* = 42 (corresponding to chronological ages 59.5-69.5).  

It is necessary to account for the fact that by definition the men in the HRS sample have survived 

from 1960 to 1992.  We do this by replacing (1) with a conditional survivor function, 
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Estimation of the model is by maximum likelihood; an individual observed to die at age a* 

contributes ln[h(a*)S(a*| a* > 32)] to the log-likelihood, while an individual observed to survive 

to age a* contributes ln[S(a*| a* > 32)] to the log-likelihood.  Because the model’s parameters—

the intercept and slope of the Gompertz mortality hazard—are expressed with reference to the 
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1960 time-origin of the process, they can be manipulated to produce an implied value of S(30)—

the chances of surviving from 1960 to 1990—or of S(32)—the chances of surviving from 1960 

to 1992.  These implications can be derived despite the fact that the HRS includes no information 

on pre-1992 mortality within the HRS cohort.  As noted already, we use Census data to develop 

an “observed” value for S(30), denoted and can compare the value implied by the HRS 

estimates to the observed value. 

ˆ(30),S

 We can, however, go further, and require the HRS estimates to satisfy the equality  
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We do this by iterating over just one of the model parameters, b1, at each iteration solving for the 

value of b0 that satisfies (2).  Thus we can force our model of mortality within the HRS cohort to 

be consistent with pre-HRS mortality experience observed in successive decennial Censuses.   

Model with Unmeasured Heterogeneity 

 We now introduce unmeasured heterogeneity (or “frailty”) into the mortality model.  

Each member of each group modeled is characterized by a strictly positive, time-invariant, 

person-specific but unmeasured frailty factor, zi, which operates multiplicatively on the baseline 

hazard; thus hi(a) = zi h0(a) and 

 0( ) exp[ ( )].i iS a z H a= −

The 0 subscripts attached to h0(a), H0(a), and S0(a) indicate that they now denote the “baseline” 

hazard, cumulative hazard, and survivor functions, respectively.  Following Vaupel et al (1979), 

we assume that at time 0 the zs come from a gamma distribution with parameters k and λ, i.e., 
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For this distribution E0(z) = k/λ and var(z) = k/λ2 (see also Lancaster 1990).  We follow the usual 
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practice of setting k = λ; i.e. setting the initial mean of z to one, and reducing by one the number 

of parameters requiring estimation.  

By “integrating out” the heterogeneity, i.e. evaluating the expression 

 0
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the cohort-level probability (i.e. the expected value of the probability) of surviving from time 0 

to age a can be shown to equal 
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 Mortality selectively removes from the cohort individuals with high values of z.  It can be 

shown that at any positive age a, the distribution of z among survivors is gamma with parameters 

k and k + H0(a).  The mean of z among survivors to age a is, therefore, 
0

.
( )

k
k H a+

  Because the 

integrated hazard, H0(a), grows with a, the mean of z shrinks with a; survivors are, on average, 

successively more robust (less frail) at each successive age. 

 Using these results, we can express the probabilities of dying, or of surviving, within our 

left-censored HRS sample, as follows:  S(a*| a* > 32), the chances of surviving to a given age 

after surviving to 1992, is 
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As before, (4) and (5) form the basis for constructing the sample likelihood, from which 
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maximum-likelihood estimation proceeds.  As in the case of the model without heterogeneity, 

the parameters of the model for left-censored data are expressed with respect to the time origin of 

the process (a*=0). 

 Finally, we can again impose on the estimation a requirement that the parameters satisfy 

the condition 
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where  indicates the value of the integrated baseline hazard implied by the estimates  

and .  In this case, we iterate over the parameters b

0
ˆ (30)H 0̂b

1̂b 1 and k, at each iteration solving for the 

value of b0 that satisfies (6). 

Thirty-year Survival Probabilities Based on Census Data 

 Hill (1999) presents a method with which data from cross-sectional data collected at 

different times, such as two Decennial Censuses, can be combined so as to produce estimates of 

survival probabilities that condition on explanatory variables.  For the estimates to be valid, the 

explanatory variables must be fixed before the first set of data is collected (for an application of 

this method see Lauderdale 2001). 

 The method employs a log-linear probability model,  

 2 1 0 1 1ln[ ( | )] ... ,x m mS a a x xα α α= + + +  (7) 
 
where x1, … , xm is the array of explanatory variables, a1 measures age at the time of the first 

cross-section, and a2 is age at the second cross-section; clearly the difference a2–a1 must be the 

same as the time interval between cross-sections.  Hill (1999) shows that if the two data sources 

are combined, and the indicator variable Yi = 1 if individual i appears in the second cross-section, 

0 otherwise, then the parameters of (7) can be estimated using logistic regression, with Y as the 
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dependent variable and x1, … xm as independent variables. 

 The results of three models of 30-year survival probabilities appear in Table 1.  Model (1) 

makes no distinctions by race or veteran status, and produces an estimate S(30) = 0.883.  Model 

(2) introduces differences by race, and model (3) includes indicators of both race and veteran 

status.  The coefficients are estimated with a high degree of precision, reflecting the relatively 

large samples available for this analysis.  Models (2) and (3) indicate that blacks’ 30-year 

survival probabilities are significantly lower than those of whites.  In model (3) we find no 

differences by veterans status in whites’ survival probabilities, but we find that black veterans 

have significantly higher survival probabilities than those of black non-veterans.  The 

coefficients in model (3) imply the following estimates of survival probabilities: SWN(30) = 

0.8918; SWV(30) = 0.8946; SBN(30) = 0.7442; and SBV(30) = 0.8453.  For blacks, the 

advantageous survival associated with military service is not enough to counteract the 

disadvantage of being black. 

Results 

 Results from four different modeling strategies—with and without unmeasured 

heterogeneity, and with and without imposing the constraint that the parameter estimates agree 

with the Census-based estimates of S(30)—applied to seven different sample subgroups appear 

in Table 2.  Several conclusions can be reached based on the evidence presented in Table 2.  

First, although we have not estimated models in which individual parameters represent race 

differences, or veteran-status differences, in mortality, we can use likelihood-ratio tests to 

compare nested models and generate inferences on each of these potential differences.  Using the 

“no heterogeneity, constrained” model specification, a likelihood-ratio test of separate models of 

mortality by race [columns (2) and (3)] versus a combined model—in each case, disregarding 
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veteran status—produces a chi-square test statistic of 16.96 (df = 2); thus with p = 0.0002 we can 

reject the null hypothesis of equal mortality-model parameters for blacks and whites.  However, 

when we conduct analogous tests of models that permit separate parameters for veterans and 

non-veterans, within racial groups [models (4) and (5) versus (2) for whites, and (6) and (7) 

versus (3) for blacks], we fail to reject the null hypothesis for either racial group.  Thus, we fail 

to find evidence, using a global test, of differences by veteran status in mortality during the 10-

year period spanned by the HRS data; this is in contrast with the findings for 1960-1990 using 

Census data, where there clearly were such effects for blacks (but not for whites).  Moreover, our 

failure to find mortality differences by veteran status implies that there is no mortality crossover, 

at least for the ages spanned by the HRS data. 

 Second, imposing on the estimation the constraint that the model parameters reproduce 

exactly our estimates of 30-year survival probabilities derived from Census data, produces 

dramatic changes in the point estimates of model parameters.  Within each of the 7 models 

estimated, the maximized value of the likelihood function (L in the table) is closer to zero 

without than with the constraint imposed, as we would expect.  However, the standard errors of 

the parameters estimated are much smaller with the constraints imposed, again as we would 

expect.  The point estimates themselves are very different with and without the constraints.  For 

example, for the “all” model (without race or veteran-status distinctions recognized), the slope of 

the Gompertz mortality function is 0.224 in the unconstrained model but drops to 0.114 in the 

constrained model. 

 As a rough test on the performance of these models, we fitted a Gompertz curve to 

mortality rates found in cohort life tables produced by the Office of the Chief Actuary of the 

Social Security Administration.  We pooled the death rates from the cohort life tables for all men 
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born in 1931, 1932, 1933, 1934, and 1935.  For each cohort, we included only the ages that 

correspond to the period 1960-2002, i.e., the same period represented in our analysis.  Thus, for 

the men born in 1931, a* = 0, … , 42 corresponds to ages 29, … , 71; for those born in 1932, a* 

= 0, … , 42 corresponds to ages 28, … , 70; and so on.  Our HRS-plus-Census data do not 

represent precisely the same populations—we restrict our attention to native-born whites and 

blacks, while the SSA tables pertain to men of all races and nativities—but the differences 

should be relatively small.  The estimated equation based on the SSA life table data is 

 *ln( ) 6.497 0.070 *,
                [0.017]  [0.0007]

am a= − +
 

 
(standard errors shown in square brackets).   It is evident that our constrained-model estimates 

are much closer to the SSA data than are the unconstrained-model estimates.  

 Finally, we fail to find any evidence of the presence of unmeasured heterogeneity in 

mortality, in contrast to other applications of the same Gompertz-with-gamma-mixture model 

(e.g., Manton et al. 1981).  For every group studied, the values of the maximized likelihood with 

and without heterogeneity are identical or nearly so, and in almost every case the k parameter 

(the inverse of the gamma variance) goes to infinity, implying that the mixture variance goes to 

zero (note:  Table 2 reports estimates of ln(k) rather than of k).  Two possible reasons for this 

result are (a) our use of data from a relatively limited part of the life cycle, and (b) modest 

sample sizes, especially for blacks.  Somewhat paradoxically, it is for blacks that we come 

closest to finding evidence for unmeasured heterogeneity (the implied values of k are 4.33 for 

blacks as a whole and 2.43 for black non-veterans, respectively), but in both cases the estimated 

heterogeneity parameters are not significantly different from zero. 

Next steps 
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 We plan to extend the analysis reported here in several directions.  First, despite the null 

results generated by the likelihood-ratio tests reported above, a more parsimonious model—for 

example, a proportional-hazards model incorporating intercept shifts for race and veteran 

status—may well produce evidence that favors the alternative hypothesis.  Second, the HRS and 

AHEAD samples allow us to bring in additional age groups, although for each such group new 

problems of aligning the decennial Census data with the various birth cohorts emerge.  Third, the 

constrained-estimation approach used here treats the Census-based estimates of S(30) as 

nonstochastic.  Those estimates are very precise, but do exhibit some sampling variability.  A 

natural direction in which to take the estimation is to randomize over values of S(30), 

investigating the sensitivity of model  estimates to this source of variability. 

Summary 

 We have presented new evidence on late-life health consequences of early-life military 

service for men in the 1931-1935 birth cohorts.  Using HRS data for this cohort, in which 

mortality experiences over the period 1992-2002 are observed, fails to produce evidence of 

differential mortality by veteran status, although it does confirm that the overall patterns of age-

specific mortality differ between blacks and whites.  In contrast, our analysis of 1960 and 1990 

Census data produces clear evidence that black veterans have lower death rates than black 

nonveterans over this 30-year period.  It could be that the midlife consequences of military 

service for blacks dissipate by later in life, or it could be that our HRS sample is simply too small 

to detect the true differences.  The estimation methods introduced here indicate the importance of 

recognizing the initial-conditions problems associated with studying life-cycle patterns using 

left-censored data.  The preliminary results presented here leave open a number of issues for 

which further research would be fruitful. 
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 Table 1:  Alternative Models of Survival from 1960 to 1990

Model
Coefficient (1) (2) (3)

Constant -0.1246 -0.1124 -0.1145
(0.0065) (0.0068) (0.0119)

Black -0.1234 ** -0.1809 **
(0.0217) (0.0307)

Veteran 0.0031
(0.0146)

Black × Veteran 0.1242 *
(0.0439)

* p < 0.01
** p < 0.001
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Table 2:  Results of alternative estimators, for selected demographic groups
(1) (2) (3) (4) (5) (6) (7)

White Black
All White Black Nonvet Veteran Nonvet Veteran

Observed S(30) 0.883 0.894 0.790 0.892 0.895 0.744 0.845

No heterogeneity,
  unconstrained
       b0 -11.790 -11.621 -12.317 -12.163 -11.288 -11.808 -14.374

(0.608) (0.709) (1.223) (1.135) (0.905) (1.464) (2.754)
       b1 0.224 0.217 0.251 0.231 0.208 0.237 0.307

(0.016) (0.019) (0.032) (0.030) (0.024) (0.038) (0.073)
       L -1453.48 -1120.94 -322.18 -377.71 -743.05 -177.69 -144.11

       Implied S(30) 0.972 0.973 0.967 0.977 0.970 0.962 0.982

No heterogeneity,
  constrained
       b0 (using constraint) -7.647 -7.726 -6.784 -7.700 -7.726 -6.287 -7.585
       b1 (estimated) 0.114 0.113 0.104 0.113 0.113 0.091 0.125

(0.004) (0.004) (0.007) (0.007) (0.005) (0.009) (0.012)
       L -1474.02 -1134.40 -331.14 -384.47 -750.00 -183.77 -147.44

Heterogeneity,
  unconstrained
       b0 -11.823 -11.621 -13.897 -12.164 -11.288 -14.663 -14.374

(0.605) (0.030) (2.124) (0.051) (0.336) (2.967) (0.064)
       b1 0.225 0.217 0.295 0.231 0.208 0.317 0.307

(0.016) (0.002) (0.058) (0.051) (0.009) (0.080) (0.004)
       ln(k ) 4.668 9.375 1.466 8.886 9.433 0.887 10.853

(0.599) (0.030) (1.187) (0.051) (0.104) (1.065) (0.105)
       L -1453.48 -1120.94 -321.75 -377.72 -743.05 -177.08 -144.12

       Implied S(30) 0.972 0.973 0.975 0.977 0.970 0.982 0.982

Heterogeneity,
  constrained
       b0 (using constraint) -7.647 -7.726 -6.784 -7.700 -7.726 -6.287 -7.585
       b1 (estimated) 0.114 0.113 0.104 0.113 0.113 0.091 0.125

(0.004) (0.004) (0.006) (0.012) (0.005) (0.074) (0.012)
       ln(k ) 10.176 10.088 12.845 10.236 10.651 13.195 11.384

(0.026) (0.030) (0.047) (0.051) (0.037) (0.074) (0.082)
       L -1424.02 -1134.40 -331.14 -384.47 -750.00 -183.77 -147.44

Sample size 1773 1485 288 502 983 153 135
Number of deaths 333 249 84 85 164 47 37
Note: Standard errors in parentheses.
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