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Abstract 
 
In 1982, Nathan Keyfitz and Andrei Rogers published contingency calculations that 
bridged the historical divide between demography and actuarial sciences and paved the 
way to a better management of financial risks at the level of cohorts and individuals. 
Many events in life involve a financial risk. Financial security requires an understanding 
of the life course and an assessment of the financial consequences of life events. This 
paper extends the work by Keyfitz and Rogers and presents a biographic actuarial model 
that combines life history models, developed in demography, sociology, health sciences 
and actuarial sciences, with a large variety of insurance schemes. The model is generic. It 
is not restricted to a particular type of insurance or financial protection. The life course is 
approached as a sequence of state occupancies and state transitions (events), and is 
modelled by a discrete-state continuous-time Markov process in two time scales: 
individual time (age) and historical or calendar time. Premiums and insurance benefits 
are linked to transitions and state occupancies. The equivalence principle is used to 
determine premiums that cover insurance benefits in complex life histories. An example 
from disability insurance illustrates the model. In an era when the public sector and the 
private sector generate innovative schemes and products aimed at financial protection 
throughout the life course in the presence of multiple demographic contingencies, a 
synthesis of demographic and actuarial modelling presents a potentially major new 
window of opportunities. Financial demography is a new field that responds to the 
challenges that contemporary and envisaged demographic changes cause in public 
finance and personal finance.  
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1. Introduction 
 
Many decisions we make in life and many events we experience involve the risk of a 
loss. Frequently, the loss is financial. When it is substantial, it affects our lifestyle and 
quality of life. The decision to leave employment for raisons of retirement, family 
reasons or to return to school involves a financial risk. Some events have limited 
financial consequences such as the loss of a mobile phone or the theft of a bicycle. Other 
events such as a theft of a car, the loss of a house due to a fire or a flood have significant 
consequences. Serious financial consequences are associated with the death of the 
provider of family income, loss of a job or a serious health problem. Events with serious 
consequences that may extend over the entire remaining lifetime are generally referred to 
as life events, a term borrowed from psychology and epidemiology (Goldberg and 
Comstock, 1980). In insurance, the term contingencies is used. Contingencies are random 
events that have major impacts when they occur. They include life contingencies, disaster 
contingencies, disease contingencies, etc.. Risk is defined as the financial consequence of 
an unforeseen event implying a loss (Frees, 1998, p. 34). 
 
To limit the financial consequences of a decision or an event, i.e. to remain in a secure 
financial position throughout the life course, risk averse and rational individuals 
reallocate financial resources (e.g. income) over the life course accounting for 
uncertainties and contingencies, and engage in risk sharing by transferring risks to other 
individuals or institutions and by paying a premium to compensate the one who takes 
over the risk. Risk sharing mechanisms transform individual risks into collective risks 
that are easier to tame. Traditional risk sharing schemes relied on mutual aid. Modern 
schemes rely on pooling financial resources and cost sharing. Risks may be shared by a 
select group of people (limited coverage, voluntary insurance) or by the society at large 
(mandatory or compulsory insurance). In many insurance schemes, risk sharing involves 
the public sector and the private sector. Government programmes that provide assistance 
to persons faced with unemployment, disability or health problems are part of social 
security or social insurance1. The method presented in this paper is a general one because 
of its focus on the human life course and the associated contingencies. The method is 
applicable in private insurance and social insurance, and to life and non-life insurance.  
 
Financial security during the life course calls for risk management. Risk management 
involves the identification of unwanted events, preventive strategies that reduce the 
likelihood of unwanted events and insurance against losses incurred once an unwanted 
event occurs. In principle, insurance can be associated with any contingency in life. In 
this paper no distinction is made between types of contingencies and types of insurers. 
Life course risk management is based on the premise that events in life are predictable 
and the financial consequences can be quantified. That requires an ability to determine 
for every event at least three measures: the likelihood of occurrence, the timing of 
                                                 
1 Public sector institutions that organize and manage social security and social insurance, including 
programs for pensions, disability, survivor and unemployment insurance, and medical expenditures are 
referred to as the welfare state (de Mooij, 2006, p. 41).  
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occurrence (age at event) and the financial loss incurred. The loss may be immediate, 
such as in the case of a car theft, or it may be spread out over time, such as in the case of 
retirement or the loss of a job. A loss that is distributed in time is likely to depend on the 
subsequent lifepath, which adds uncertainty.  
 
Financial protection involves arrangements for a reallocation of funds from one stage of 
life to another and for transfers of funds from persons who do not experience income loss 
or excessive expenditures to persons who do. The effect of the arrangements is a 
smoothing of the income and expenditures over the life course and between members of a 
group or population. Arrangements can be individual or collective. The reallocation of 
income over the life cycle is predominantly an individual arrangement but collective 
schemes are significant too. For instanced, studies show that social security and taxation 
schemes offer more financial protection by life-cycle smoothing than by redistributing 
income between individuals (Falkingham et al., 1993; de Mooij, 2006, p. 124)2.  Group 
membership and entitlements are generally based on personal attributes and preferences. 
Because of the heterogeneity within a group, collective arrangements may involve 
substantial redistribution of funds within a group and, as a consequence, may cause 
substantial equity issues. For instance, pension schemes in which currently employed 
persons collectively pay for the pensions of currently retired persons tend to redistribute 
funds from the poor to the rich because the rich generally live longer (de Mooij, 2006, p. 
119; Caselli et al., 2003). Disability insurance redistributes funds in the opposite direction 
because the poor are more prone to health problems and disability. Equity issues are 
central to insurance schemes (risk sharing mechanisms) that involve risk classification, 
i.e. the classification of individuals into groups on the basis of risk levels (see e.g. 
Cummins et al., 1983). Equity issues are also central to social protection schemes that 
extend over different birth cohorts or generations and that may result in substantial 
intergenerational transfers.  
 
The purpose of this paper is to present a model that describes the financial lifepaths of 
cohorts and individual cohort members in the presence of individual and collective 
arrangements. The model consists of two modules. The first is a demographic model that 
describes and projects the life courses of cohorts and cohort members. It differs from 
traditional demographic projection models in the level of detail about the life course. 
Traditional models project a population by age and sex and consider only the events of 
birth, death and migration. The demographic model presented in this paper is a generic 
model that considers several life events or contingencies in the life course. Because of its 
focus on the individual life course, it is referred to as a biographic model rather than a 
demographic model. In the biographic model, the life course is operationalized as a 
sequence of events and a sequence of states. Events are transitions between the states. 
The biographic model describes and projects cohort biographies and individual 
biographies in terms of states occupied and transitions experienced. The second module 
is an actuarial model that associates payments with events or transitions and with state 
occupancies and determines the actuarial value (expected present value) of a single 
                                                 
2 A recent study by the Netherlands Bureau for Economic Policy Analysis suggests that between 60 and 80 
percent of the welfare state actually concerns intrapersonal reallocation of income over the life cycle, rather 
than redistribution between rich and poor (de Mooij, 2006, p. 137).  
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payment or a series of payments. The biographic actuarial model is an instrument for 
financial life planning at the individual level and the cohort level. It can effectively be 
used to determine the transfers between stages of life and between members of a cohort 
that are necessary for financial security throughout the life course. The model can easily 
be extended to multiple cohorts and used to quantify intergenerational transfers in 
payment schemes that involve several cohorts such as in the PAYGO pension scheme 
and the more recent notional defined contribution (NDC) schemes.  
 
The biographic actuarial model is a multistate probability model, more specifically a 
continuous-time Markov chain. A multistate model distinguishes several functional states 
in one or different domains of life. State variables denote attributes of individuals; they 
include employment status, level of education, marital status, family status, health status, 
region of residence, etc.. The state an individual occupies at a given age and the transition 
from one state to another cannot be predicted with certainty and therefore depend on 
chance. They are represented by random variables. Sequences of random variables are 
stochastic processes that can be described by stochastic models (see e.g. Taylor and 
Karlin, 1994). A continuous-time model is chosen because life events and other 
transitions between functional states are not restricted to discrete times. Transitions occur 
in continuous time. They are governed by transition intensities that may depend on a 
range of factors (covariates, situational variables, etc.). Systematic factors determine the 
expected transition intensities for groups of individuals with the same characteristics. 
Distributions around the expected values determine the individual variations. The 
transition intensities represent the fundamental parameters of the biographic model. They 
are often approximated by transition rates and transition probabilities and they are 
generally estimated from observations on individual life histories.  For a non-technical 
illustration of the biographic model, see Willekens et al. (2006).  
 
In actuarial sciences and demography, multistate models have a relatively long history. 
Among the first uses of Markov chain models in life contingencies and their extensions 
were by Amsler (1968), Hoem (1969), Consael and Sonnenschein (1978), Keyfitz and 
Rogers (1982), Waters (1984, 1989) and Ramlau-Hansen (1988). Hoem (1988) presents a 
first comprehensive discussion of how life insurance mathematics can be embedded in 
the theory of Markov chains. Keyfitz and Rogers introduce multistate demographic 
models into actuarial sciences. The first textbook on Markov models in (life) insurance 
was published by Wolthuis (1994; second edition 2003). Another textbook is Haberman 
and Pitacco (1999). Ramlau-Hansen (1988) introduces the counting process framework in 
life insurance. For a review of the early literature, see Hoem (1988) and Jones (1993, 
1994). Wolthuis (2003) developed a model for life insurance, Pitacco (1995) and 
Haberman and Pitacco (1999) and Cordeiro (200) developed models for disability 
insurance, and Gritz et al. (1998) and Debicka (2005) for unemployment insurance. 
Attema (1997) elaborated the multistate Gompertz model. The actuarial model proposed 
in this paper is a general model that encompasses these models. Multistate actuarial 
models have much in common with multistate models developed and used in 
demography and other sciences. In demography, multistate models have a long history 
too and they are at the origin of the subfield of multistate demography (for a brief 
historical overview, see Willekens, 2003). Multistate demographic models were 
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developed by Rogers (1975), Schoen (1988) and others to estimate and project (1) the 
numbers of individuals in stages of life or functional states at a given age or a given point 
in time and (2) the durations of stay in the different stages of life or functional states by 
members of a cohort or a population. In particular the multistate life table, which 
summarizes large sets of life history data into experiences of (synthetic) cohorts, has 
shown to be very useful. Hoem, who was among the first to apply Markov chain models 
in life contingencies, was also one of the major advocates of the use of probability 
models in multistate demography and gave the multistate life table a probabilistic 
underpinning (Hoem and Funck Jensen, 1982). In health sciences (for reviews see 
Commenges, 1999, and Hougaard, 1999) and labour market studies multistate models are 
used increasingly to describe and predict entire life histories or biographies. For position 
papers and illustrations in health sciences, see e.g. Ben-Shlomo and Kuh (2002), Halfon 
and Hochstein (2002), Peeters et al., (2002) and WHO (2002). For methodological 
studies integrating multistate demography and health sciences, see Manton and Stallard 
(1988), Manton et al. (1993), Niessen (2002) and Mamum (2003). The fundamental 
parameter of multistate models is the (instantaneous) transition rate (continuous-time 
models) and the transition probability (discrete-time models). The study of how these 
rates and probabilities change in one or different time scales (e.g. age, calendar time, 
duration in current position) and what personal and contextual factors affect these 
changes is the subject of survival analysis, an important subfield of statistics. For a 
review of statistical models, see e.g. Lancaster (1990), Andersen  et al. (1993), Blossfeld 
and Rohwer (2002), and Hougaard (2002). 
 
The multistate model presented in this paper adds important features to the models 
covered in the literature. First, the model is an individual model. It describes the financial 
lifepaths (biographies) of individuals. Individuals are members of a birth cohort and the 
individual biographies differ from the cohort biographies to the extent that individual 
differences are taken into account. In this paper, individual differences are random. 
Hence, members of the same birth cohort have biographies that differ only as a result of 
chance. Second, the model describes changes in two time scales: individual time (age) 
and historical or calendar time. As a result, the model is ideally suited to describe 
changing life histories and to predict life courses. Third, the model brings to insurance 
and actuarial science key insights from mathematical demography. One example is the 
relation that exists between individual life cycle behaviour and the aggregate population 
structure (Preston, 1982; Arthur and Vaupel, 1984). That link is important in translating 
the commonly held period perspective on financial protection schemes, such as in the 
PAYGO pension scheme, into a cohort perspective and for disentangling the relative 
effects of period, cohort and age factors on financial security. Fourth, the model bridges 
the traditional macro-approach to the study of population and the more recent micro-
approach. The model treats changes in population size and composition (macro-level 
changes) as outcomes of events at the individual level. Fifth, the model is entirely in 
matrix terms and builds on the matrix methods that have been developed by Rogers 
(1975, 1995) in multistate demography. As people age they move between different 
functional states and stages of life. To capture that dynamics, the states must be studied 
simultaneously. A system of simultaneous linear equations describes that dynamics.   
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The structure of the paper is as follows. Section 2 reviews the multistate biographic 
model. The extension to an actuarial model is presented in Section 3. An illustration of 
the biographic actuarial model to disability insurance is given in section 4. Age-specific 
transition rates by state of origin and state of destination and payment functions that 
depend on age and functional state occupied determine the state occupancies, the 
actuarial values of premiums paid and insurance benefits received and the actuarially fair 
premium. Section 5 concludes the paper.  

2. The multistate model 
 
In a biographic model individuals are characterized by attributes. Sex, marital status, 
employment status, income status, and health status are some of the attributes. An 
attribute generally refers to a domain of life, such as family, work and health. One 
attribute or a combination of attributes defines a functional state and an individual with a 
given set of attributes is said to occupy a particular state. Not all attributes are manifest. 
Individuals may differ by latent attributes that remain undisclosed. The biographic model 
that is considered in this paper is restricted to manifest attributes. Unobserved 
heterogeneity is disregarded3. Attributes vary with age. A change in attribute is an event, 
which results in a transition from one functional state to a new state. The period between 
two transitions defines an episode, which is also referred to as a spell and a stage. The 
duration of an episode, which is equivalent to the duration of stay or sojourn time in a 
state, is an important characteristic of the live of an individual. The life course may 
formally be viewed as a sequence of events, states and episodes. If a sequence of events 
is limited to a particular domain of life, it is often referred to as a career (Elder, 1985; 
Willekens, 2001). Careers co-exist, co-evolve and interact. Age and year of birth are not 
treated as attributes. They position the individual in time. Age positions the individual in 
individual time and the year of birth positions the individual in historical time. In 
biographic analysis, populations are stratified in age groups and birth cohorts.  
 
Consider a cohort consisting of m individuals. Individuals are independent and 
individuals with the same overt characteristics are identical. An individual is denoted by 
k (k = 1, 2, …, m). At each age and point in time, individual k is characterized by a set of 
attributes, i.e. occupies a state. The possible states are given by the state space S ={1, 2, 
3, …, I}, with I the size of the state space. The state space consists of a finite number of 
states. If death is considered, the state space includes the state of dead. Dead is an 
absorbing state; an individual may enter the state but cannot leave the state. The state 
occupied at a given age or time cannot be predicted with certainty. Hence the indicator 
variable denoting the state occupied is a random variable. The state individual k occupies 
at exact age x and exact time t is denoted by the random variable Yk(x,t). Note that 
individual k is born at time t-x and is member of the birth cohort t-x. At any time/age, an 
individual must be in one of I possible states. The random variable Yk(x,t) is a discrete 
variable that can take on as many non-zero values as there are states in the state space. It 
is a polytomous random variable following a multinomial distribution. The sequence of 

                                                 
3 Hoem (1988, p. 172) point out that actuarial techniques could be developed that build on the notion of 
unobserved heterogeneity in survival analysis.   
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random variables {Yk(x,t), x ≥ 0 and t ≥ 0} is a stochastic process identifying the state 
occupied at each age x and time t. The sequence can be described by a time-
inhomogeneous Markov chain with finite state space. 
 
The state occupied may be denoted differently. Let ),( txYk

I be an indicator function which 
is 1 if Yk(x,t) is i and 0 otherwise, and define kYi(x,t) = ),( txYk

I . The expected value of 
kYi(x,t) is the probability that individual k is in state i on his x-th birthday, which is 
precisely at time t: [ ] { }1),(Pr),( == txYtxYE ikik . It is the state probability. Two types of 
state probabilities are distinguished: unconditional and conditional. The unconditional 
state probability is the probability that cohort member k occupies state i at age x; it is 
denoted by kSi(x,t) with kSi(x,t) =  E[kYi(x,t)] = Pr{kYi(x,t)=1} =  Pr{Yk(x,t)=i}. The state 
probabilities are combined in the state vector kS(x,t) of state probabilities for individual k. 
It may also be written as kS+(x,t) * kπ(x,t) where kS+(x,t) is the probability of surviving 
from birth at t-x to exact age x at t irrespective of the state occupied at x and t, and kπ(x,t) 
is a vector with elements kπi(x,t) that is the conditional probability that individual k 
occupies state i at exact age x, provided k is surviving at age x.  
 
The conditional state probability is the probability of occupying state i at age x and time t 
provided the state occupied at a previous age is known. In addition to the state at a 
previous age, the personal attributes of individual k at age x, other conditions at age x and 
attributes and conditions at previous ages may be known. The probability that individual 
k, who is born at t-x, and who is in state yk(x1,t1), at age x1 at time t1, in state yk(x2,t2) at 
age x2 at time t2 and in state yk(x3,t3) at age x3 at time t3, and who at age x and time t has 
attributes Zk(x,t), is in state j at age x at time t, is 
 

 }txZ)t(xy ),t(xy ),t(xy |j  = t)xPr{Y kkkkk ),(;,,,,( 112233                              x > xi   i = 1, 2, 3 
 
where Zk may cover characteristics at age x and time t and characteristics and experiences 
up to age x and time t. In most applications it is assumed that only the most recent state 
occupancy is relevant: 
 

}txZt(xy |j  = t)(xYPr{ = }txZ)t(xy ),t(xy ),t(xy |j  = t)(xPr{Y kkkkkkkk ),(;),,),(;,,,, 33112233  
 
The covariates Zk(x,t) are omitted for convenience. If the state occupied at x3 is i, then 
 

t)xt(xp=  i} = )t(xy |j  = t)(x{Y ijkkk ,;,,,Pr 3333  
 
where kpij(x3,t3; x,t) is the probability that individual k, who occupies state i at x3 at time 
t3, occupies state j at age x at time t.  
 
The transitions are measured by comparing, for each individual, the states occupied at 
two consecutive ages or points in time. They are discrete time transitions and the 
probabilities are discrete-time transition probabilities. Transitions may also be measured 
by recording a movement or transition between two states as it occurs, i.e. in continuous 
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time. These transitions are referred to as direct transitions. In multistate and biographic 
modelling, the distinction between discrete-time transitions and direct transitions is 
essential. Let kYij(x,t) be a time-varying indicator variable which takes on the value 1 if 
individual k whose date of birth is t-x, makes a move from state i to state j at exact age x, 
i.e. in the infinitesimally small interval following x. It is zero otherwise. The interval is 
sufficiently small to exclude multiple transitions. During the interval, at most one 
transition may occur. The expected value of kYij(x,t) is the probability that individual k 
born at t-x makes a transition from i to j at exact age x. It depends on being alive at x and 
being in i at that age. The conditional transition probability is the probability of a move 
from i to j provided individual k is alive and in state i at age x: 
 

{ }
h

thxxp
h

itxYjhthxYtx ijk

h
kk

hijk

),,(
lim),(¦),(Prlim),(

00

+
=

==++
=

→→
μ  for i ≠ j 

 
It is the transition probability per unit time for very small intervals. The probability that 
individual k who is born at t-x, who is currently of age x and occupies i, moves to j 
during an infinitesimally small interval following x is known as the instantaneous rate of 
transition or transition intensity at age x and time t, and is denoted by kμij(x,t). It is the 
conditional probability of a direct transition during an infinitesimally small interval 
following x. 
 
The unconditional probability of a direct transition from i to j at exact age x is the 
probability of occupying state i at x times the instantaneous rate of transition from i to j.  
kμij(x,t) kSi(x,t). It may also be written as kS+(x,t) * kπi(x,t) * kμij(x,t) 
where kS+(x,t) is the probability of surviving from birth at t-x to exact age x at t, kπi(x,t) is 
the probability that a survivor at exact age x occupies i, and kμij(x,t) is the transition 
intensity at that age.  
 
The multistate model is a continuous time Markov chain. The theory has also been 
reviewed elsewhere. See e.g. Hoem and Funck Jensen (1982), Namboodiri and 
Suchindran (1987) and Wolthuis (2003) among others. A continuous time Markov chain 
(CTMC) is a stochastic process on a discrete state space in continuous time, {kY(t); t ≥ 
0}, for which the distribution of future states, given the present state and all past states, 
depends only on the present state and is independent of the past. The CTMC is defined by 
the instantaneous rates of transition between the states kμij(x,t). The term kμii(x,t) is 
defined such that ∑

≠

=−
ij

ijkii txtx 0),(),( μμ  

Hence  

h
thxxptxtx iik

h

I

ij ijkiik
1),,(lim),(),(

0

−+
=−=−

→≠∑ μμ  

 
The quantity kμii(x,t) is non-negative.  
 
The matrix of instantaneous rates with off-diagonal elements -kμij(x,t)  and with kμii(x,t) 
on the diagonal is known as the generator of the stochastic process {kY(x,t); x ≥ 0; t ≥ 0} 
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that describes the position at every age of an individual born at t-x (Çinlar, 1975, p. 256). 
The matrix is denoted by kμ(x,t) and has the following configuration: 
  
 

 
where kμii(x,t) is defined above. Each column of kμ(x,t) sums to zero.  
 
The probability of a transition during a small interval δx is kP(δx) = I + δx kμ(x,t) 
(Bartholomew, 1982, p. 86). The transition probability from i to j is kpij(δx) = δx kμij(x,t) 
(i≠j). The probability of staying in state i is ∑

≠

=−=
ij

ijkiik txxxp 0),(1)( μδδ . As δx→0, 

the probability of transition out of any state approaches zero.  
 
The matrix of discrete-time transition probabilities is the transition matrix: 

 

 
An element kpij(x,x+h,t) of kP(x,x+h,t) denotes the (conditional) probability that 
individual k who is born at t-x and occupies state i at exact age x at time t, is in state j 
exactly h years later. Each column of kP(x,x+h,t) sums to one, provided mortality is 
absent or dead is represented by a separate state.  
 
The dynamics of the multistate system is described by the system of differential 
equations: 
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where kμ(x+τ,t+τ) is the matrix of transition intensities at age x+τ for individuals born at 
t-x. Note that individual k who occupies state i on his x-th birthday at time t may 
experience varying transition rates before reaching the age of x+τ at time t+τ.  
 
The differential equation is the forward Chapman-Kolmogorov equation. One element is 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

t)(x,k..t)(x,kt)(x,k

.....

.....
t)(x,k..t)(x,kt)(x,k

t)(x,k..t)(x,kt)(x,k

  t)(x,

 --

- -
-- 

II2I1I

I22212

I12111

μμμ

μμμ
μμμ

μk

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+++

+++

+++

=+

t)hx(xk..t)hx(xkt)hx(xk

.....

.....
t)hx(xk..t)hx(xkt)hx(xk

t)hx(xk..t)hx(xkt)hx(xk

hx

ppp

ppp
ppp

IIII

I

I

k

,,,,,,

,,,,,,

,,,,,,

  t),(x,

21

22212

12111

P



 11

∑ =+ +++++++=−
+ I

r irkrjkijkjk
ijk txxPtxtxxPtx

d
txxPd

1
),,(),(),,(),(

),,(
τττμτττμ

τ
τ

 

 
where kμj+(x+τ,t+τ) is the intensity of leaving state j. In the forward differential equation, 
the process is in state i at age x+τ. The probability that the process is in state j changes 
over the interval [x+τ,x+τ+dτ). The right-hand side is the difference between the 
outflows from state j during the interval dτ and the inflows into j during the same 
infinitesimally small interval dτ for a process that is in state i at age x. In demography, 
the equation is often viewed as a flow equation: the change in (population) stocks is 
expressed in terms of outflows and inflows.  
 
To solve the system of differential equations, it may be replaced by a system of integral 
equations: 

ττττ dtxxtxthxx k

h

kk ),,(),(),,(
0

+++−=+ ∫ PμIP     

 
where kμ(x+τ,t+τ) is the matrix of transition intensities at age x+τ for individuals born at 
t-x and kP(x,x+τ,t) is the matrix of transition probabilities during the (x,x+τ)-interval for 
individuals born at t-x. The integral equation is a flow equation too.  
 
If the transition intensities are constant during the interval from x to x+h (i.e. piecewise 
constant), the equation may be written as follows: 
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0
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h

kkk ++−=+−=+ ∫ LMIPμIP ττ  (1) 

 
where kM(x,x+h,t) is the matrix, with elements kmij(x,x+h,t), of average transition rates 
during the interval from x to x+h for individuals born at x-t and 

∫ +=+
h

kk dtxxthxx
0

),,(),,( ττPL  is the sojourn time spent in each state between ages x 

and x+h by an individual born at t-x and alive on the x-th birthday, by state at age x. 
kL(x,x+h,t) is known as the exposure function. The sojourn time in a functional state 
measures the duration of exposure to the risk of leaving the state. For instance, 
kLij(x,x+h,t) denotes the time spent in state j between ages x and x+h by individual k who 
is born at t-x and who occupies state i at age x.  
 
In the case of piecewise-constant transition intensities, the relation between the transition 
probabilities and the transition rates is: 
 

 
 

which may be approximated by the linear model (see e.g. Willekens, 2006 and the 
references in that paper) 
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The state probabilities at a given age and time depend on the state probabilities at a 
previous age and the discrete-time transition probabilities during the interval: 
 

),(),,(),( txthxxhthx kkk SPS +=++  
 
An element kSi(x,t) of kS(x,t) denotes the probability that individual k born at t-x occupies 
state i at age x at time t.  
 
The previous equation is a projection model. The state probabilities at age x+h and time 
t+h are related to the state probabilities at a previous age and time. 
 
Note that 
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The exposure function kL(x,x+h,t) is the sojourn time in the different states during the 
interval from x to x+h by state occupied at exact age x. It is equal to 
 

∫ +=+
h

kk dtxxthxx
0

),,(),,( ττPL  

 
An element kLij(x,x+h,t) of kL(x,x+h,t) is the number of years individual k aged x at exact 
time t and occupying state i at that time, may expect to spend in state j before reaching 
age x+h, i.e. during the period t and t+h. An individual who occupies state j at time t is 
likely to spend more time in j during the (t, t+h)-interval than an individual in another 
state at t. The elements of kL(x,x+h,t) are conditional measures since they measure the 
sojourn time conditional on being in one of the states at time t. The unconditional sojourn 
time, i.e. the number of years spent in j between t and t+h by an individual born at t-x, 
irrespective of the state occupied at birth, is  

),0(),,0(),,(),(),,( xtxtxthxxtxthxx kkkkk −−+=+ SPLSL  
where kP(0,x,t-x) is the matrix of discrete-time transition probabilities between ages 0 
and x, and kS(0,t-x) is the vector of state probabilities at birth (at time t-x). An element 
pij(0,x,t-x) of kP(0,x,t-x) is the probability that individual k born in state i at t-x occupies 
state j at exact age x (and t = x). An element kSi(0,t-x) of S(0,t-x) is the probability that 
child k born at t-x occupies state i at birth. 
 
The sojourn time in j irrespective of the state occupied at exact age x is the vector 

),(),,(),,( txthxxthxx kkkx πLL +=+  
where kπ(x,t) is the vector of conditional state probabilities. An element kπi(x,t) is the 
probability of occupying i at exact age x, conditional on survival at x. An element  

),( txLikx of the vector ),,( thxxkx +L is the sojourn time in i during the interval from x to 
x+h irrespective of the state occupied at x. It is an unconditional measure of sojourn time. 
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If the transition intensities are piecewise constant, the exposure function may be 
expressed in terms of the transition rates (Van Imhoff, 1990; Willekens, 2006): 
 

[ ] [ ][ ]),,(exp),,(),,( 1 thxxhthxxthxx kkk +−−+=+ − MIML , 
 
provided the inverse exists. In demography and actuarial sciences, it is often assumed that 
events are uniformly distributed during the (x, x+h)-interval. The result is that the 
exposure function can be approximated by a linear function: 

 [ ]),,(
2
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Now we turn to direct transitions. If individual k makes a direct transition from i to j at 
time t and age x, kYij(x,t) = 1. It is zero otherwise. The probability that individual k, born 
at t-x and currently aged x and occupying state i, makes a direct transition to state j is 
E[kYij(x)] = kμij(x,t) kSi(x,t). Let kNij(x,t) denote the number of direct transitions 
individual k makes during the interval (x, x+dx; t, t+dt). It is the density of (i,j)-
transitions at age x and time t. The sequence {kNij(x,t); x ≥ 0 and t ≥ 0} is a stochastic 
process known as a multivariate counting process. The theory of counting processes was 
first developed by Aalen (1975, 1978) in his PhD dissertation. For a complete overview, 
see Andersen et al. (1993) and for a brief introduction Hosmer and Lemeshow (1999, 
Appendix 2). During the infinitesimally small interval, at most one transition is possible, 
hence kNij(x,t) is 0 or 1. The expected number of (i,j) transitions during the interval is 
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The number of direct (i,j)-transitions individual k, who is born at t-x, may expect to make 
during the age interval from x to x+h, is 
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It is an unconditional measure, i.e. it depends on the probability of surviving and being in 
state i at age x+τ. The count measure is determined by an observer at the reference age 0. 
The expected number of direct transitions during the interval may also be viewed from a 
different reference age. The expected number of direct (i,j)-transitions individual k, who 
is born at t-x and alive at age x, may expect to experience during the interval (x,x+h) is  
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where x is the reference age and kS+(x,t) is the probability that individual k is alive at age 
x at time t. The state occupied at that age is not relevant. 
 
The expected number of direct transitions beyond age x is 
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Let kxN(x,x+h,t) denote the matrix of expected numbers of direct transitions during the 
interval from x to x+h by individual k who is exact age x at t. It is  
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where kdS(x,t) is a diagonal matrix with the state probabilities kSi(x,t) in the diagonal. The 
unconditional measure is the number of (i,j)-transitions in the interval from x to x+h by a 
new-born aged 0. The number of direct (i,j)-transitions between x and x+h by state at age 

y < x is ∫ +
h

kk dtxxtx
0

),,(),( ττPμ  

If transition intensities are constant during the (x, x+h)-interval, the product 
),(),,( txthxx kxk LM + gives the expected numbers of direct transitions experienced 

during the age interval (x,x+h) by individual k aged x at time t. Note that the probability 
of a discrete-time transition during the same interval by individual k aged x at t is 
kP(x,x+h,t) kπ(x,t) . 
 
The biographic model has been developed for individual k. It may easily be extended to a 
cohort model. Let Q denote the number of children born in a given year denoted by t-x-1. 
It covers the period from t-x-1 to t-x. These children reach their x-th birthday during the 
year from t-1 to t. At time t they are x years old in completed years, i.e. they are between 
x and x+1 years of age. The state child k occupies at birth is denoted by Yk(0,T-x) where 
T varies from t-1 to t. The distribution of newly born children between the functional 
states given by the vector of state probabilities S(0,t-x-1) where t-x-1 denotes the year of 
birth. The distribution between functional states of individuals celebrating their x-th 
birthday is  
 

Qxtxtxtx )1,0()1,,0()1,( −−−−=− SPk  

3. The actuarial model 
 
Each state occupancy and state transition may involve a payment. For each state 
occupancy and state transition a payment function indicates what needs to be paid and 
who should pay whom. By associating payments to state occupancies and state transition, 
a biographic actuarial model emerges that is generic and encompasses most if not all 
insurance schemes that exist today. In private insurance, the payment function is 
specified by an insurance contract or insurance policy. In social insurance and social 
security payments are based on collective agreements (entitlements) and have a legal 
basis. The first part of this section describes several factors that cause insurance policies 
to differ. These factors are embedded in payment functions that represent a major 
component of the actuarial model that is presented next. The actuarial model 
encompasses a wide variety of insurance contracts covering a range of contingencies in 
the life course. A contract involves two parties, the insured or beneficiary and the insurer. 
The insurer can be private or a public body and the contract can be a real contract, a 
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social contract agreed upon by a collective or a legal arrangement. In this paper, insurer 
is used to indicate the actor who expresses the commitment to pay the beneficiary. It 
includes the private and the public sector, insurance companies, pension funds, and any 
organization that agrees to pay individuals during particular episodes of life and/or 
transitions in life and receives compensation in return. 
 
The insurance contract describes the actors (insured, insurer), the period (term) of the 
insurance, the coverage, the premium, the benefit or claim and other conditions. The 
social contract governing a collective insurance specifies who is eligible to participate in 
the insurance and what the conditions are. The period of insurance (policy period) 
extends from the onset of the insurance contract (policy issue) to the end of the contract 
(term of policy). During that period the insured pays premiums to the insurer and receives 
benefits in return. The period of the insurance can be fixed or variable. In case of a fixed 
period of length n, say, the insurance is a term insurance of duration n. Coverage may 
start at the date the policy is issued, the date at which an event occurs (e.g. onset of 
disability or death) or after a waiting period (e.g. deferred period, deferred annuity).  
 
Payments may be lump sum payments at one point in time, a series of payments at 
predetermined points in time or a continuous payment. Lump sum payments are usually 
linked to state transitions and to state occupancies at a predetermined point in time. 
Continuous payments are linked to episodes, i.e. periods of state occupancies. The 
insured or policyholder pays a premium to maintain a claim on the insurance contract. 
The premium may be paid as a single payment (lump sum; single premium) at one 
moment in time, e.g. at the time the insurance policy is issued, or as monthly or annual 
payments during a predefined period of time. The insurance benefit paid to the insured by 
the insurer may also be a single payment or monthly or annual payments. One example of 
a single benefit payment is the endowment assurance, in which a given amount is paid in 
case of death or survival to maturity (date on which payment is due). If the payment is 
made only if death occurs within a period of n years, the insurance is a term insurance. If 
the payment is made at time of death irrespective of when it occurs, the insurance is 
known as a whole life insurance. Another example of a single benefit payment is an 
insurance contract providing a lump sum benefit in case of permanent disability. The 
payment of a lump sum may also be at a point in time that is unrelated to the occurrence 
of a life event but that is related to either the onset of the insurance contract (policy issue) 
or the end of the contract (term of the policy). Benefits that are paid at equal intervals are 
known as annuities. The annuity owner or annuitant is the person entitled to receive 
annuity payments. The payment is usually made monthly or annually and the period can 
be fixed or variable. An annuity certain is annuity payment during a predetermined 
number of years, regardless of life or death. Variable periods arise when the payment is 
associated with a state occupancy and is made as long as the policyholder or beneficiary 
occupies a given state. Examples of variable periods include the remaining lifetime (in 
case of life insurance), the duration of employment and unemployment, the duration of 
disability. Hence, the state occupied determines how much is paid and the sojourn time in 
a state determines the duration of payment. A life annuity consists of a series of payments 
that are made as long as the insured is alive. It provides an income for life. A disability 
annuity is a series of payments made while the insured is disabled. A combination of 
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annuities is possible, for instance an annuity certain for 10 years, say, and a deferred 
annuity beyond that. Keyfitz and Rogers (1982, p. 67) consider such an annuity policy. 
The level of payment may be fixed or variable. For instance, a level premium is a 
premium that does not change for the entire duration of the policy.  
 
Payments may include administrative expenses made by the insurer in the operation of an 
insurance contract, a savings/investment component, and taxes. The fees or 
administrative expenses included in the premium are known as load. A premium that 
covers the insured benefits and the incurred costs is known as the expense-loaded 
premium (or adequate premium) (see e.g. Berger, 1995, pp. 104ff). A payment often 
includes an investment or a return on investment in addition to insurance. In that case, the 
annuity is known as variable annuity because the benefit payment is linked to the values 
of investments, such as common stocks. In the United States, variable annuities account 
for approximately two-thirds of the annuity sales (Brown and Poterba, 2005). A fixed 
annuity guaranties a fixed amount monthly. Analogously, variable life insurance has an 
investment component and the amount of benefit paid depends on the value of the assets 
behind the contract. Taxes play a significant role in insurance. Some premiums are taxed 
while other premiums are not. Of particular interest are tax deferral schemes in which 
premiums paid are tax-exempt while benefits received are taxed. Universal life is a life 
insurance that includes, in addition to insurance, a savings component that is invested in a 
tax-deferred account. It allows the holder to shift money between the  insurance and 
savings components of the policy. In the early 1980s (1983), the Allstate Life Insurance 
Company introduced Universal Life as a flexible life insurance policy and marketed the 
product as One policy for a lifetime of changing needs. Today, universal life is part of life 
planning which is a holistic approach to financial challenges at all stages of life and 
combines different financial threats into a single scheme. The biographic actuarial model 
is a technical instrument to implement Universal Life and other holistic financial 
protection plans that cover the entire life course.  
 
The transfer of risk from the insured to the insurer involves the payment of a premium to 
compensate the one who takes over the risk. The compensation is determined on the basis 
of the premium principle that assigns to the risk a real number. That number is used as 
the financial compensation for the risk transfer. It depends on the risk transferred, 
administrative and other costs incurred by the insurer, and a loading to compensate the 
insurer for being in a less safe position and to avoid getting in ruin. The loading depends 
on the degree of risk aversion of the insurer. The loading may also include “adverse 
selection” costs associated with voluntary purchase behaviour. Adverse selection exists 
when the survival or transition probabilities of people who purchase insurance or a 
financial protection plan (e.g. pension plan) are different from those of the general 
population. Poterba and Warshawsky (2000) estimate that for commercial insurers in the 
United States offering life annuity payouts purchases with funds from the individual 
accounts, the present value of the benefits, using the mortality rates of the general 
population, is between 15 to 25 percent below the present value of the premium payment. 
Premium principles differ in the factors they consider and the way the factors are treated. 
Kaas et al. (2001, pp. 113ff) discuss several premium principles. In this paper, we 
consider only risk premiums and disregard administrative expenses made by the insurer 
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and other surcharges that may apply. The premium is determined from the distribution of 
the claims or insurance benefits. The minimum premium is sufficient to cover the 
insurance benefits. If the insurer is risk neutral, the loading for risk aversion is zero. In 
this case the premium principle is the equivalence principle.  Following that principle, the 
premium is determined by equating at policy issue the expected present value of future 
premiums to the expected present value of insurance benefits or claims. The premium 
that satisfies the equivalence principle is a net premium. The net premium is sufficient for 
a risk neutral insurer. In this paper, we assume a risk neutral insurer. The expected 
present value of a payment or a series of payments is the actuarial value of the 
payment(s). The actuarial value depends on a set of actuarial assumptions embedded in 
the premium principle and on the timing of payments, which in turn depends on the 
timing of transitions in the life course. The likelihood of transitions, the timing of 
transitions and the sojourn times or durations of stay in several functional states can be 
predicted by the biographic model. 
 
The actuarial model presented in this paper is generic in that it considers several types of 
payments. The types belong to two broad classes: lump sum payments and continuous 
payments. Continuous payments are governed by intensities or instantaneous rates of 
payment, as suggested by Hoem (1988, p. 174), Wolthuis (2003, p. 3) and others. The 
following types of payments are distinguished (Haberman and Pitacco; 1999, p. 3): 

a. A continuous contribution or premium paid during the infinitesimal interval (x, 
x+dx) by individual k (the insured or policy holder) who is in state i at age x and 
time t4. It is the instantaneous premium rate kpi(x,t). The amount paid during the 
interval (x, x+dx) is kpi(x,t) dx. The premium paid at age x depends on the state 
occupied at that age. An individual who is employed may pay a different premium 
than an individual who is unemployed, retired or disabled. 

b. A continuous annuity benefit paid by the insurer during the infinitesimal interval 
(x, x+dx) to individual k who is in state j at age x and time t. It is the 
instantaneous benefit rate kbj(x,t). The amount the beneficiary receives during the 
interval (x, x+dx) is kbi(x,t) dx. The benefit may vary with the state occupied. For 
instance, a severely disabled individual may receive a higher benefit than a mildly 
disabled individual.  

c. A lump sum kcij(x,t) paid by the insurer at time t to individual k if, at that point in 
time, individual k experiences a (direct) transition from state i to state j. The lump 
sum is associated with the (i,j)-transition. If the transition does not occur, the 
lump sum is not paid. Hence the probability of receiving a benefit is the 
probability of a transition at time t. At time t individual k is aged x. The payment 
of the benefit may be restricted to transitions that occur within a given period (t, 
t+n) or age interval (x, x+n).  

d. A lump sum kdj(x,t) paid by the insurer at time t to individual k if, at that point in 
time, individual k is in state j. The lump sum is associated with the state 
occupancy at t. If the insured k is not in j at t, the lump sum is not paid. The time t 
is generally the point in time when the policy expires. The lump sum is known as 
pure endowment. The probability of receiving a benefit is the state probability at 

                                                 
4 In actuarial science, it is said that the policy is in state i.   
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age x and time t. In life insurance, a pure endowment provides for payment of the 
sum insured only if the individual insured is alive at t.  

e. A lump sum kg(x,t) paid at time t by an insured k to the insurer. An example is the 
level premium.  

Special cases of the above cases are considered by Wolthuis (2003, pp. 26ff). They 
include insurance benefits that are functions of premium reserves at time t, where 
premium reserves may cover all premiums paid previously or may be restricted to 
premiums paid while in a given state.  
 
Suppose that at time t an individual k of age x pays a premium if he is in state i and 
receives an annuity benefit if he is in state j. In the following section, t is omitted for 
convenience. The benefit received during the infinitesimal interval [x, x+dx) is denoted 
by kbj(x). The benefit received at age x depends on the state occupied at that age. Since 
the state occupied at x cannot be predicted with certainty it is represented by a random 
variable, kYj(x) say. As a consequence, the benefit received is a random variable too. It is 
equal to dxxYxb jkjk )()( .  If kYj(x) = 1, individual k receives the benefit, otherwise not. 
The present value (PV) at birth of that benefit is exp(-δx) kbj(x), where δ is the 
instantaneous rate of interest, which is assumed to be non-stochastic and constant. The 
expression exp(-δx) is the discount function and exp(-δ) the annual discount factor. The 
PV of the benefit individual k receives at age x is  

[ ] dxxYxbxx jkjkjk )()(exp)( δ−=Β  
The present value is a random variable (see also Haberman and Pitacco, 1999, p. 48) 
 
The random present value of the annuity benefit received during the age interval from x 
to x+h is  
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The present value may be estimated at reference ages different from age 0 (birth). The 
present value at age x is 
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The expected PV of the benefit received at age x by individual k is  
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where E[kYj(x)] is the expected value of kYj(x). It is equal to the state probability kSj(x) = 
Pr{kYj(x)=1} = Pr{Yk(x)=j}, which is the probability that individual k is in state j at exact 
age x. The actuarial value of an annuity benefit paid by the insurer during the period from 
x to x+h provided the insured is in state j is 
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 If the beneficiary k occupies state j only during part of the (x,x+h)-interval, the annuity is 
paid only during the sojourn time in j.  
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If the annuity level is one (unit-level annuity), the actuarial value is5 
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If annuities are paid to people in different states, the annuity benefit depends on duration 
of stay in the different states. The expected present value is 
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Different states could relate to different degrees of severity of disability, or to 
unemployment and disability. The above expression provides a basis for a comprehensive 
insurance policy that includes several domains of life. Note that the states should be 
mutually exclusive.  
 
The premium paid while in state i during the infinitesimal interval [x, x+dx) is kpi(x). The 
PV of the premium paid is determined in a way analogous to the benefit. Let kΠi(x,x+h) 
denoted the PV of the premium paid during the interval from x to x+h when individual k 
is in state i. It is obtained by the following expression: 
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The actuarial value of the premium paid is the expected value 
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If the premium differs by state occupied, then the PV of the premium paid by individual k 
at age x is 
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The present value of a lump sum paid by the insurer to individual k who experiences a 
transition from i to j is determined in a similar way. Assume that the transition occurs at 
time t when individual k is aged x. The individual is born at t-x. The value of the lump 
sum associated with the (i,j)-transition is kcij(x,t). The lump sum is paid if individual k 
born at t-x makes an (i,j)- transition at t. Recall that kYij(x,t) is a time-varying indicator 
variable which takes on the value 1 if individual k whose date of birth is t-x, makes a 
move from state i to state j at exact age x, i.e. in the infinitesimally small interval 
following x. It is zero otherwise. The random present value of the lump sum, measured at 
birth of the insured, is 

[ ] ),(),(exp)( txYtxcxx ijkijkijk δ−=Β  
 
                                                 
5 In the actuarial literature, the notation j

hxa : is used to denote the expected present value, measured at time 
0, of a unit-level annuity benefit paid during the period from x to x+h if the insured is in state j.  
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The expected present value of the lump sum paid at time of the transition during the 
infinitesimal interval (x, x+dx) is 

[ ] [ ] dxtxStxtxcxxE ijkijkijkijk ),(),(),(exp)( μδ−=Β  
where kμij(x,t) kSi(x,t) dx is the probability density of a transition during the interval (x, 
x+dx) and kcij(x,t) is the amount individual k receives provided the transition takes place. 
The probability density may be denoted by kfij(x,t): kfij(x,t) = kμij(x,t) kSi(x,t). 
 
If a lump sum is paid at each (i,j)-transition experienced during an interval from x to x+h 
and the amount depends on age, then the expected present value of the lump sums is 
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If the lump sum is independent of age or time at transition, then 
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where [ ]),( ∞xNDE ijkx is the expected discounted number of direct transitions from state i 
to state j between ages x and x+h by individual k aged x at t6.  
 
If a lump sum is paid for every (i,j)-transition beyond age x, then the expected value of 
the benefits received beyond age x discounted to age x is 
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where kS+(x) is the probability that individual k is alive at exact age x. The state occupied 
at that age is not relevant. If the lump sum is independent of age, then 
 

[ ] [ ]),(),( ∞=∞Β xNDEcxE ijkxijkijkx  
 
The final type of benefit payment is one where the insurer pays a lump sum benefit to 
individual k if he is in state j at age x (and time t). The lump sum is dj(x). The expected 
present value of a lump sum paid by the insurer at time t to the individual k is exp[-δx] 
dj(x) kSj(x). It is the product of the probability of being in state j at age x (at time t) and 
the discounted value of the lump sum benefit.  
 
The actuarial value at age x of all benefits provided by an insurance policy (annuity 
benefits and lump sum payments) during the interval from x to x+h is (see Haberman and 
Pitacco, 1999, p. 52) 

                                                 
6 The concept of discounted number of events is introduced by Fisher in the field of genetics when he 
developed the theory of reproductive value (for a recent review, see Keyfitz and Caswell, 2005). It is 
consistent with the concept of ‘discounted number of survivors’ used in actuarial sciences (see e.g. Gerber, 
1995, p. 120).  
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where the benefit is for an individual alive at age x, without consideration of the state 
occupied at x. kSj(ξ) is the probability that individual k is alive at age ξ and occupies state 
j at age ξ. It is equal to the probability of being alive at ξ, kS+(ξ), times the conditional 
probability of occupying state j, kπj(ξ). Note that the actuarial value of the insured benefit 
is expressed in terms of the state probabilities at ξ. The benefit at ξ may also be estimated 
conditional on the state occupied at age x (x ≤ ξ), in which case the actuarial value is 
expressed in terms of discrete-time transition probabilities.  
 
Individual k pays a premium when in one of several states and receives a benefit when in 
one of some other states. The difference between premiums paid and benefits received 
varies over the life course. The insurer has a premium reserve if the actuarial value of 
future insurance benefits exceeds the actuarial value of future premiums. The insurer 
holds the reserve for fulfilment of the policy obligations. The reserve may be defined 
prospectively or retrospectively. The prospective premium reserve for an insurance 
policy at age x is the actuarial value of the future benefits less the actuarial value of the 
future premiums: [ ] [ ]),(),( hxxEhxxE kk +Π−+Β . It is a summary of benefit minus 
premium payment streams between x and x+h. The prospective reserve for all policies is 

[ ] [ ][ ]∑ =
+Π−+Β

m

k kk hxxEhxxE
1

),(),(  (Haberman and Pitacco, 1999, p. 53; Wolthuis, 
2003, p. 31). The retrospective premium reserve of an insurance policy is the actuarial 
accumulated value of the past premiums minus past benefits. It is a summary of the 
premium minus benefit payment streams leading up to x. The retrospective premium 
reserve was introduced by Hoem (1988). For details, see Wolthuis (2003, pp. 186ff). The 
retrospective reserve at age x is defined over the interval (0, x) while the prospective 
reserve is defined over the interval (x, ∞). If the prospective reserve is positive, the 
expected benefits that need to be paid to policyholders in the future exceed the expected 
premiums to be collected. In the absence of a retrospective reserve, the insurer has a 
funding requirement. To restore the balance, premiums may be raised or benefits may be 
reduced7. The prospective and the retrospective reserve may be defined for each state in 
the state space (Wolthuis and Hoem, 1990).  
 
The equivalence principle is fulfilled if at policy issue the expected value of future 
benefits is equal to the expected value of future premiums. More formally, the actuarial 

                                                 
7 For instance in Dutch occupational pension plans, pensions are adjusted for inflation. The adjustment is 
not complete implying a decline of purchasing power of pensioners. The rate of adjustment may depend on 
the prospective reserve, as is the case with the largest pension fund, the ABP fund covering civil servants. 
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value of the premiums paid between the policy issue (age 0) and the term of the insurance 
(age ω) is equal to the actuarial value of the benefits: 
 

[ ] [ ]),0(),0( ωω Π=Β kk EE  
 
If the actuarial value of the stream of benefit payments exceeds the actuarial value of the 
stream of premiums, the insurer incurs a loss. To prevent a loss, a premium is determined 
that satisfies the equivalence principle. That premium is the net premium. The premium 
reserve considered in this section is net, since it is assumed that the insurer is risk neutral 
and no expenses are included in the benefit and premium functions. If the premium 
individual k pays is determined by the equivalence principle, the premiums paid cover the 
expected benefit payments. The insurance scheme is actuarially fair at the individual 
level. Actuarial fairness is usually determined at the group level.  If for a group of m 
individuals the net premium is determined such that [ ] [ ]∑∑ ==

Π=Β
m

k k
m

k k EE
11

),0(),0( ωω , 
then the insurance organization can meet its obligations (net of administrative expenses) 
and the insurance system is actuarially fair for the group although some members of the 
group may benefit more than others (for a discussion of distributional effects in 
actuarially fair insurance schemes, see Caselli et al., 2003). If the equivalence principle is 
the basis for setting the premium, the insurance scheme is actuarially fair.  
 

4. Illustration: disability insurance 
 
To illustrate the actuarial model, we consider an example in the field of disability 
insurance. Suppose that individual k purchases a disability insurance on his x-th birthday. 
Assume that the insurance contract stipulates that the insurer pays a constant disability 
annuity b to individual k during periods of disability that occur before k reaches age ω. 
Beyond age ω the insurance does not cover anything. The term of the insurance policy is 
ω - x. In this example, the disability benefit paid by the insurer does not depend on the 
degree of disability nor on age. The premium is assumed to vary with age. The premium 
is paid when individual k is active (not disabled) and is interrupted during periods of 
disability. The premium function is denoted by p(x). Consider a three-state model (Figure 
1). The states are active, disabled and dead. The transition intensities are shown in Figure 
1. The intensity kμ12(x) is the instantaneous rate of entry into disability at age x. In the 
epidemiological literature, it is known as the instantaneous incidence rate. In the actuarial 
literature it is the rate of inception of disability. kμ21(x) is the instantaneous rate of 
recovery (exit from disability) at age x. The force of mortality at age x is kμ13(x) if 
individual k is active and kμ23(x) if he is disabled. 
 

Figure 1 about here 
 
Suppose individual k is healthy and active at age x when the policy is issued. The 
changes in state probabilities are described by the system of differential equations 
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where an element kpij(x,x+τ) denotes the probability that individual k who is in state i at 
exact age x (e.g. age at policy issue) is in state j at age x+τ.  
 
The solution of the system is 
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If the transition intensities are constant during the interval from x to x+h, the matrix of 
transition probabilities is 
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where )()( τ+= xx xk μM for 0 ≤ τ < h.  
 
The state probabilities at age x+h are given by the equation: 
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The sojourn times are given by the exposure function 
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At age x, individual k is in state 1. The premium he may expect to pay at age x+τ and the 
annuity benefit he may expect to receive depend on the state occupied at age x+τ. If he is 
in state 1, he pays an age-specific premium p(x+τ) and if he is in state 2, he receives a 
fixed benefit b. The following matrix expression produces the expected present values at 
age x of the premium paid and benefit received at age x+τ 
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where kP1j(x,x+τ) is the probability that individual k, who is in state 1 at age x (i.e. at 
time the insurance policy is issued), is in state j at age x+τ (j = 1, 2). Note that kP11(x,x+τ) 
+ kP12(x,x+τ) may be less than one because of mortality. The premium paid receives a 
minus sign because it involves a cost to individual k. In the actuarial literature, the 
premium is positive and the benefit is negative (see e.g. Hoem, 1988, p. 196; Ramlau-
Hansen, 1988, p. 226). The prospective gain from the disability insurance over the entire 
lifetime of individual k or the term of the insurance, whatever comes first, is 
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The actuarial value of the insured benefit is expressed in terms of the probability of being 
disabled at age x+τ [= kP12(x,x+τ)] and the actuarial value of the premium paid is 
expressed in terms of the probability of being active [= kP11(x,x+τ)].  
 
A numerical example will clarify the actuarial model further. We consider the example 
given by Haberman and Pitacco (1999, p. 58ff) but we reformulate the example using 
matrices. Suppose an individual of age 40 purchases a disability insurance. The term of 
the insurance is 10 years, i.e. if the policyholder becomes disabled before age 50, the 
insurer pays a constant annuity of one (b = 1) until age 50. The insurance considered is 
therefore a term disability insurance. The disability insurance starts paying immediately 
at onset of disability and does not enforce a waiting period that is common in disability 
insurances. A constant premium is paid for 5 years while the policyholder is active. No 
premium is paid during episodes of disability. The instantaneous rate of interest is 
ln(1.04) which is 3.9221 percent. The transition intensities are assumed constant. They 
are μ12 = 0.002136, μ13 = 0.004183, μ21 = 0.005, μ23 = 1.2*μ13 = 0.005020. The factor 1.2 
is the excess mortality associated with disability. The instantaneous rate of death is 20 
percent higher for disabled individuals than for active individuals. It is a relative risk.  
 
The state probabilities are 
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where M is constant during the age interval from 40 to 50: 
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The matrix of transition probabilities is determined using the linear approximation. It is  
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Table 1 and Figure 2 show how the state probabilities evolve with duration of the policy. 
At entry into the disability insurance, policyholders are active. At age 50, i.e. at the policy 
term, about 4 percent of the policyholders is dead and 2 percent is disabled. Of those who 
die before age 50, 99 percent dies while active and 1 percent dies while disabled. The 
share of deaths of disabled individuals among the total deaths depends on the incidence 
of disability and the mortality level among disabled individuals.  
 

Table 1 about here 
Figure 2 about here 
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Table 2 shows the sojourn times in each state by age. The sojourn times are estimated 
assuming uniform distribution of transitions within age intervals of one year. The 
assumption is equivalent to the assumption of piecewise constant probability densities. 
The expected sojourn time in the active state during the policy, given the transition rates, 
is 9.69 years; the duration of disability is 0.10 year, i.e. a little over a month.   
 

Table 2 about here 
 
When an individual is disabled, he receives a disability annuity benefit of one unit (b = 
1). The nominal value of the benefit received is b )50,40(240 L = 0.1011 units. The 
expected value of the total benefit received between ages 40 and 50, discounted at age 40, 
is  

[ ] [ ] )140,40()5.0(039221.0exp)50,40( 240
9

0
++++−=Β ∑ =

ttLtbE
t

 

where )140,40(240 +++ ttL  is the sojourn time in the disability state between age 40+t 
and 40+t+1 and b is the annuity benefit (equal to one). The actuarial value of the insured 
benefit is Β(40,50) = 0.0784. The value depends on the annuity benefit, the interest rate, 
the incidence of disability, the recovery rate and the death rate of disabled individuals. 
 
The premium is paid during the first five years, provided the policyholder is alive and 
active. The number of years active during the first 5 years of the policy is 4.4714 years. 
In this example we assume a constant and actuarially fair premium. The premium is 
calculated using the equivalence principle [ ] [ ])50,40()50,40( Π=Β EE  where 

[ ] )50,40()50,40( 140 DLpE =Π  with )50,40(140 DL the discounted sojourn time in the 
active state between ages 40 and 50 (discounted at age 40). Hence, 
 

[ ] 01753.0
4714.4
0784.0)50,40(/)50,40( 140 ==Β= DLEp    

 
The figure is the same as that obtained by Haberman and Pitacco (1999, p. 59).  
 
The prospective reserve at age x is defined as the actuarial value of future benefits less 
the actuarial value of future premiums, measured at age x (x ≥ 40). The actuarial reserve 
may be given by the state of the policy at x, i.e. by the state occupied by the policyholder 
at age x. An individual who obtains an insurance policy at age x is likely to be active but 
may also be disabled, e.g. mildly disabled. In that case, a distinction is made between an 
active reserve and a disabled reserve (Haberman and Pitacco, 1999, p. 95). In this paper, 
the prospective reserve is the active reserve since the individual is assumed to be active at 
the time of purchase of the disability insurance policy. The actuarial value at x of future 
benefits is 
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where b = 1. The actuarial value at x of the future stream of premiums is 
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where p = 0.01753 and δ(t) is one when the policyholder is required to pay a premium at t 
and zero otherwise. In our example, δ(t) is one for t = 40, 41, … , 44 and zero when t is 
45 or larger. )1,(1 +ttL is the number of years spent in the active state, irrespective of the 
state occupied previously; the policyholder may be in the active state since the policy 
issue or he may be recovered from a disability. The prospective reserve estimated at age x 
irrespective of the state occupied at x is the population-based prospective reserve. The 
prospective reserve estimated by state of the policy at age x is the status-based 
prospective reserve. The status-based measure differentiates by the state occupied at x. 
Policyholders who are disabled at x are expected to spend more time in disability beyond 
x than policyholders who are active at age x. Hence the prospective reserve at x is 
considerably larger if the policyholder is disabled at x (disabled reserve) than if he is 
active (active reserve). The difference can be attributed to the expected sojourn time in 
each state and is independent of the annuity disability benefit and the premium. Note that 
we assumed that at policy issue (age 40), individuals are active. If policies would be 
issued to disabled individuals and if they would be required to pay a different premium, 
the policy would depend on the status at entry, i.e. the policy would be status-based. The 
multistate model can easily handle status-based policies. The overall or population-based 
reserve at x is the sum of (1) the disabled reserve times the probability of being disabled 
at x and (2) the active reserve times the probability of being active at x. The prospective 
reserve at age x for a policyholder who is disabled at x is close to the number of years 
between x and policy term (age 50), since b = 1, the rate of recovery from disability is 
low (μ21 = 0.005) and attrition due to death is low. The distinction between population-
based and status-based measures is relatively common in multistate demography (see e.g. 
Willekens, 1987, pp. 136ff).  
 
The population-based prospective reserve is shown in Figure 3. Premiums are paid 
between the 40th birthday and the 45th birthday. Hence the reserve increases up to age 45 
and declines afterwards. At age 45, the reserve is the actuarial value of disability benefits 
paid by the insurer between ages 45 and 50 since no premium is paid after age 45. The 
expected number of years in disability between 45 and 50 is 0.0752 (Table 2). Since the 
annuity benefit is one and no premium is paid after age 45, the prospective reserve at 45 
is equal to the expected sojourn time in disability between 45 and 50, discounted at the 
given constant rate. Who benefits from the financial reserve, which is at its maximum at 
45? The future allocation of the reserve may easily be determined. Most of the reserve is 
for policyholders who are disabled at 45 and a small part is for individuals who are active 
at 45 but become disabled at a later age but before age 50. The probability that at age 45 a 
policyholder is disabled is 1 percent. In the absence of recovery and mortality within 5 
years and with a zero interest rate, the necessary reserve is 5. Hence the necessary reserve 
at 45 for policyholders who are active at that age is approximated by the following 
equation: 5*01.0*97.00752.0 += z . From that equation we obtain the prospective active 

reserve z: 0260.0
97.0

5*01.00752.0
=

−
=z  
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The largest part of the prospective reserve of 0.0752 at age 45 is required for 
policyholders who are disabled at 45 (0.0500 i.e. 66 percent). About 94 percent of the 
policyholders remains active up to age 50 and about 2 percent dies while in the active 
state. The premium contributed between ages 40 and 45 covers the disability benefit for 
policyholders who experience episodes of disability between policy issue at age 40 and 
policy term at 50 or death before 50.  
 

Figure 3 about here 
 

The multistate actuarial model may be used to assess the effects of prevention of 
disability relative to cure or care of persons with disability. The outcome of the 
assessment depends on the actuarial value of the insured benefit which itself depends on 
the expected number of years in disability and the annuity disability benefit. The 
expected years (sojourn time) in disability is the outcome of a complex interaction of the 
transition rates, which are the incidence of disability, the rate of recovery, and the death 
rate for active and for disabled individuals. If, for instance as a result of improved 
medical treatment or support for persons with disability, the relative risk of dying for 
disabled individuals would decline from 1.2 to 1.1, say, then disabled individuals live 
longer and the actuarial value of the insured benefit increases. The increase is not linear 
with increased survival because of the discounting. If, on the other hand, the relative risk 
of dying remains at the initial level, but preventive measures reduce the incidence of 
disability and hence postpone the age at onset of disability, the total amount of premiums 
paid increases and the actuarial value of insured benefits decreases. If the age at policy 
term is fixed, as in our example, preventive measures increase the actuarial value of 
premiums and reduce the actuarial value of benefits. If the equivalence principle is 
applied to determine the premium, preventive measures should result in lower premiums.  
 
Recently, Vaupel (2005) discussed a method to assess the impact of lifesaving measures 
on the life expectancy. His conclusion is that the impact depends on the frailty of the 
individual whose life is saved. By implication, heterogeneity should be taken into account 
when assessing the impact of lifesaving measures. The analysis can be extended to 
insurance and multistate actuarial models. A full extension is beyond the scope of this 
paper. The extension presented here is illustrative only. What is the effect on the 
prospective reserve of preventing disability for one individual (individual k, say)? We 
assume that individual k is aged x and is not different from the other individuals of the 
same age. In other words, individual k experiences the same incidence of disability as 
other active individuals. The number of years individual k may expect to be disabled 
before reaching age y depends on the disability status at age x.  If individual k is disabled 
at x and recovery is not possible, the expected number of years of disability before y is 
the expected number of years lived between x and y. If individual k is active at x, the 
expected number of years in disability before y is kL12(x,y,): 
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During the same period, the expected number of years individual k is active is  
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Note that kL11(x,y) + kL12(x,y) is not equal to y-x because of mortality. Consider a 
disability following an accident. If an accident is prevented and, as a result, individual k 
aged x does not become disabled, individual k has an additional kL11(x,y) years of active 
life before reaching age y. If the accident would have occurred, k would be disabled for 
the entire period from x to death or age y, whatever comes first. As a result of the 
prevention of the accident, the expected duration of disability is kL12(x,y) years. Note the 
assumptions that k is not different from other individuals and that the prevention of the 
accident does not change the rate of disability.  
 
The actuarial value of the disability annuity foregone and the savings by the insurer, 
assuming unit-level annuities, is 
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The first term on the right-hand-side is the expected discounted annuity benefit for an 
individual who is disabled at age x. The second term is the expected discounted annuity 
benefit for an individual who is active at x. The savings depend on the relative magnitude 
of the mortality rate of disabled individuals and the incidence of disability. The measure 
that prevents k to become disabled at x does not prevent disability of occurring at higher 
ages. It does not prevent disability forever. Its effect is therefore to postpone disability 
and the associated insurance benefit payments to higher ages. As a result the actuarial 
value of the stream of disability benefits declines.  
 
The prevention of disability has also an effect on the premium paid. We assume that the 
insurance premium is paid during the entire period the individual is active. Before the 
preventive measure, the individual becomes disabled at age x and no premium is paid 
after that age. After the preventive measure, the actuarial value of the premium collected 
by the insurer is 
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The increase in the prospective reserve is [ ] [ ]),(),( 11 yxEyxE Π−Β . Unless the premium 
is adjusted in view of the equivalence principle, the insurer gains from preventive 
measures.  
 
To determine the impact on the prospective reserve of preventing individual k from 
becoming disabled, it was assumed that k is not different from the other policyholders. 
But individuals differ. Individuals with higher frailty levels are more prone to accidents. 
The neglect of heterogeneity and the differential effects of preventive measures may 
result in an overestimation or underestimation of the effect. For a discussion of the effect 
of heterogeneity on the impact of lifesaving measures on the life expectancy, see Vaupel 
(2005). A similar analysis can be carried out to assess the impact of measures that do not 
prevent disability but that reduce mortality among disabled individuals, for instance by 
reducing the rate of progression from mild disability to severe disability.  
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5. Conclusion 
 
Many decisions we make in life and many events we experience involve the risk of a 
financial loss. To limit the consequences, the risk is shared by transferring part of the risk 
to an insurer and by financially compensating the insurer for taking the risk. Financial 
security throughout the life course calls for life cycle risk management that involves 
preventive strategies to reduce the likelihood of unwanted events and insurance policies 
to limit the losses incurred once an unwanted event occurs. Insurance can be associated 
with any contingency in life. Financial protection is based on the premise that events are 
predictable and the financial consequences can be estimated. That requires an ability to 
determine for every event at least three measures: the likelihood of occurrence, the age at 
occurrence and the financial loss incurred.  
 
This paper presents an instrument for financial life planning. It is a model hat describes 
the financial lifepaths of cohorts and individual cohort members in the presence of 
variety of insurance schemes. The model considers several contingencies in the life 
course and treats the contingencies from a unified perspective. As a result, the 
conventional distinction between life insurance and non-life insurance is not needed. 
Instead, generic concepts are used that encompass most insurance schemes in existence 
today. The concepts are event and state. The model consists of two modules. The first is a 
biographic model that approaches the life course as a sequence of events and a sequence 
of states. Events are transitions between the states. The biographic model describes and 
projects cohort biographies and individual biographies in terms of states occupied and 
transitions between a state of origin and a state of destination. The transitions are 
governed by transition intensities that vary with age and that may depend on 
characteristics of the transitions and the individuals experiencing the transitions. The 
biographic model is a multistate probability model, more specifically a continuous-time 
Markov chain. The second module is an actuarial model that associates payments with 
events or transitions and with state occupancies and determines the actuarial value of a 
single payment or a series of payments.  
 
The biographic actuarial model pictures the financial life course of an individual. Each 
member of a population has a characteristic set of transition intensities that underlie the 
life course. To remain practical, individuals who have important characteristics in 
common are assumed to have transition intensities that differ only as a result of a random 
factor. One important characteristic that several individuals have in common is the year 
or period of birth. Membership of a birth cohort is an important attribute in the study of 
changes in the positions of individuals that compose a population. In this paper, members 
of the same birth cohort have biographies that differ only as a result of chance. As 
individuals age, personal attributes change. The dynamics is described by a system of 
differential equations that may conveniently be studied using matrix methods. The 
biographic model is entirely in matrix terms and builds on matrix methods that have been 
developed by Rogers and others in the field of demography. This paper brings to 
insurance mathematics significant insights from multistate mathematical demography.  
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The model is illustrated using an example from disability insurance. Premium is paid 
during some stages of life (active) while insurance benefits are received during other 
stages (disabled). Survival probabilities differ by disability status and recovery from 
disability is possible. The example demonstrates the strengths of the matrix formulation 
of the model and illustrates the contributions that can be expected from mathematical 
demography. The model specification allows a straightforward extension to multiple 
functional states, e.g. by distinguishing disability levels.  
 
The biographic actuarial model is an instrument for financial life planning at the 
individual level and the cohort level. It can effectively be used to determine the transfers 
between stages of life and between members of a cohort that are required to secure 
financial protection throughout the life course. The model can easily be extended to 
multiple cohorts and used to quantify intergenerational transfers in payment schemes that 
involve several cohorts such as in the PAYGO pension scheme and the more recent 
notional defined contribution (NDC) schemes.  
 
Increased longevity and increased individual autonomy in lifestyle and life course call for 
new financial instruments to provide financial security throughout the life course. The 
instruments should be sufficiently general to encompass individual accounts and 
traditional social security systems. A lifetime of financial security calls for a holistic 
approach to life contingencies and life cycle risk management. Scientific methods need to 
be developed that assist private individuals, financial institutions and governments in 
maintaining individual financial security in a world characterized by rapid demographic 
and social change. This paper aimed at contributing to the development of such methods.  
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Table 1 
State probabilities by age 

 Active Disabled Dead
40 100.0 0.0 0.0
41 99.4 0.2 0.4
42 98.7 0.4 0.8
43 98.1 0.6 1.2
44 97.5 0.8 1.7
45 96.9 1.0 2.1
46 96.3 1.2 2.5
47 95.7 1.4 2.9
48 95.1 1.6 3.3
49 94.5 1.8 3.7
50 93.9 2.0 4.1 

 
 

Table 2 
Expected sojourn time (in years) in 
each state for a 40-year old person, 

by age 
 Active Disabled

40 0.9969 0.0011
41 0.9906 0.0032
42 0.9844 0.0052
43 0.9782 0.0073
44 0.9721 0.0093
45 0.9660 0.0112
46 0.9600 0.0132
47 0.9540 0.0151
48 0.9481 0.0169
49 0.9422 0.0188

Total 9.6923 0.1011 
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Figure 1. Three-state model of disability 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 
State probabilities by age 
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Figure 3 

Prospective reserve between policy issue and policy term 
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