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ABSTRACT 

 
 
 
The Rendille tribe of Northern Kenya is an “age-group society” in which cohorts of similarly aged 

males known as “age sets” are organized along periodic lines of descent. This paper develops a 

matrix population model that reveals the genealogical dynamics inherent in the Rendille social 

organization. The rules governing marriage as they relate to lineage considerations substantially 

reduce the size and the growth rate of the population; they also induce periodicity in the 

demographics, and dramatically favour one of the age-set lines. More generally, the analysis 

suggests that matrix population modeling is a powerful tool for analyzing the social dynamics of 

age-group societies.  

 
 
 



 
1. Introduction 
 

Ethnographers have classified societies that are formally organized according to age and/or 

lineage as “age-group” societies. Such societies are found around the world and have been 

classified in set-theoretic terms by Stewart (1977). “Age-set” societies are those that recruit 

similar aged males into cohorts – age sets – whose members transit the lifecycle together. 

“Paternal-linking” societies are societies that link a father’s age-set with the sons in lineages. This 

paper examines a particular age-group society, the Rendille of northern Kenya, incorporating both 

forms of age-group organization, age sets and paternal linking.  The operation of the Rendille 

age-group rules is well described by a genealogical (lineage-based) matrix population model. The 

solution to the model reveals the population dynamics inherent in the age-group marriage rules 

and dramatic differences in the evolution of the various lineages.   

 

A historical description of the Rendille age-group system is presented in Table 1 (reproduced 

from Engineer, Roth and Welling, 2006). The system’s history is remarkably regular: every 14 

years a new age set of males roughly between the ages of 14-30 is initiated. Three age sets 

make up what the Rendille call a fahan. A fahan is a “genealogical generation”, which we denote 

by the index n. The age sets are also organized along three lines of descent: each fahan n 

contains age sets Xn, Yn and Zn, one from each of the three lineages denoted X, Y and Z.  Sons 

belong to the fahan subsequent to that of their fathers. For example, an “early-born” son of an 

age-set Xn father is initiated into age set Xn+1. Thus, 42 years separates the initiation of fathers 

and their early-born sons. “Late-born” sons are initiated into the age set that follows that of their 

early-born brothers, e.g., a late-born son of an age-set Xn father is initiated into age set Yn+1.  

 

In Stewart’s (1977) categorization of age-group societies, Rendille society is described as a 

“negative paternal-linking society” which maintains fathers and early-born sons in the same 

lineage. In the case of the Rendille, the paternal-linking rules require a minimum three age-set 

interval between the initiation of father and sons. Early-born sons are initiated into the next age-

set that belongs to the same age-set line as their fathers. The lines of descent between fathers 

and early-born sons correspond to a 3-age-set lineage cycle and late-born sons fall out of step 

with their father’s lineage cycle. The reader is referred to Engineer, Roth and Welling (2005) for a 

more complete description of the Rendille age-group system, its history, and for evidence that the 

Rendille in fact closely adhere to the age-group rules.  

 

To study the population dynamics of the Rendille age-group system, we develop a matrix 

population model that groups daughters in relation to their father’s age-set and lineage. The 

marriage customs and age-group rules are then used to identify marriages between daughter 



cohorts and men of various lineages. The model is maternal in that reproductive rates only 

depend on when women marry not whom. The maternal reproductive assumption permits a 

matrix analysis with fixed coefficients.1 With a maternal model, the process of mothers begetting 

daughters determines all of the population dynamics. In particular, the model is described by a 

system of difference equations that relate how daughters beget daughters by lineage, fahan, and 

birth order.  

 

Using stable population theory, we prove that the population dynamics of the fahan-based model 

yield convergence to a constant growth path. The rules governing marriage according to lineage: 

substantially reduce the level and the growth rate of the population, induce periodicity in the 

demographics, and dramatically favours one of the age-set lines. We show these results apply 

generally over the range of parameters that are demographically realistic.  Perturbation analysis 

allows us to measure the contribution of each vital coefficient to population growth.  Growth 

elasticities with respect to the vital coefficients are calculated and compared to simulation results. 

   

This paper builds on previous work. The history and structure of the Rendille age-group rules is 

discussed in detail by Engineer, Roth and Welling (2006). They outline a macro-dynamic model 

that is consistent with Rendille age-group organization according to Beaman’s (1981) 

ethnographic study.  Simulations are then used to analyse the population dynamics and age 

structure induced by the social institutions represented in the model; the simulation analysis is 

akin to “experimental history” wherein the study of historical counterfactuals sheds light on the 

process of institutional change (cf. Hammel 1979).  In a separate paper, Engineer, Kang, Roth 

and Welling (2006) construct a formal “overlapping generations model” of the Rendille age-group 

rules and show that the population dynamics can be studied from either the age-cohort or the 

genealogical perspective.2  Their calibrated macro-simulation model is based on Roth’s (1993, 

1999) data. The model is used to explore the political economy dynamic generated by conflicting 

interests of the various lineages.  

 

The present paper links matrix population models not only to the analysis of age-group systems 

but also to overlapping generations modeling more generally. Here, the formal genealogical 

overlapping generations model of Engineer, Kang, Roth and Welling (2005) is described in more 
                                                 
1 Engineer, Roth and Welling (2006) make a strong case for the maternal reproductive assumption. 
Amongst the Rendille, women are not allowed to bear children until they marry. Married women space 
bearing children roughly every three years; the Rendille live a nomadic existence in dessert environment 
making it difficult to carrying more than one infant at a time. All women marry; there is no shortage of 
husbands as polygyny is allowed. Women may continue to bear children and raise them as their husband’s 
even after their husband has died. 
2 The overlapping generations model is a widely used theoretical model used in economics. It has for the 
most part not been used as an applied demographic model and genealogy is ignored. See Engineer and 
Welling (2004) for a further description and reference to the literature.   



detail and solved analytically using Perron-Frobenius matrix methods.  The mathematical analysis 

provides a rigorous consistency check on the macro-simulation analysis in the other papers. More 

importantly, the analytical solution provides general results that show that the simulation-based 

conclusions of Engineer et al (2005) extend over historically relevant regions of the parameter 

space.3 

 

The paper proceeds as follows. Section 2 lays out the elements of the dynamic model. The 

steady state is characterized analytically in Section 3. Section 5 examines perturbations to the 

model. Section 5 concludes.  

 
2. The dynamical system  
 
In this section we state the assumptions upon which the genealogical matrix population model is 

based, illustrate the model dynamics with the aid of a flow diagram, and then proceed to derive 

the system of equations governing the dynamics. 

 

Assumptions of the model 

 

Our model postulates the existence of generation groups distinguished by lineage and fahan, the 

basic units of genealogical and generational distance used by the Rendille.  Recall from Table 1 

that a fahan is to a three age-set epoch equal to 3 x 14 = 42 years with each epoch cycling 

through the lineages X, Y, and Z. This cyclical feature of the Rendille age-group system makes it 

possible to construct a genealogical model that is congruent with the age-set formulation. 

Because marriage and child-rearing activities are conceived as relations among the ordered 

generation groups, additional assumptions that address the coordination of these processes in 

real time are unnecessary. This is in contrast to the overlapping generations model of Engineer, 

Kang, Roth and Welling (2005) based on temporally situated age sets (cf. the “simplifying 

assumption” of Engineer et al 2005). 

 

Assumption G1 (Lineages).  Individuals are assigned to one of three lineages denoted by X, Y, 

and Z.  Lineage assignment is patrilineal: an individual belongs to lineage k only if his/her father 

belongs to lineage k. (The converse also holds if a “climbing” rule is assumed.)  Without loss of 

generality, the Teeria are associated with lineage X and non-Teeria are associated with lineages 

Y and Z. 

 

                                                 
3 Axtell (2000) discusses the potential complementarities between mathematical and simulation analysis in 
the social sciences, even when the mathematical model is explicitly soluble. 



A generation group, male or female, is identified by its lineage and fahan. For the female 

generation groups, we also need to distinguish between the early-born and late-born in each 

female generation group in order to pin down the population dynamics. This is because 

differential timing of birth leads to differences in the age at which daughters marry, even if they 

belong to the same lineage.  

 

Assumption G2. (Generation groups). Males are grouped by fahan and lineage while females are 

grouped by fahan, lineage, and birth order (early- vs. late-born). Generation [Fahan] n consists of 

male generation groups (Xn, Yn, Zn) and female generation groups (Xn,X'n,Yn,Y'n,Zn,Zn'). Late-born 

female groups are denoted by the symbol ('). 

 

Note that daughters are identified by their father’s lineage, i.e., if the father is born into lineage X, 

the daughter is also associated with lineage X. Thus, X’n+1 represents late-born daughters from 

lineage X, born to fathers of fahan n. 

 

Because age-at-marriage for women is heterogeneous with respect to lineage and birth order, we 

assign each female generation group a parameter governing the proportion of women marrying 

young. 

 

Assumption G3 (Marriage timing by lineage). Of each female generation group k=X,X',Y,Y',Z,Z', a 

fixed proportion pk are women-marrying-young and (1 - pk) are women-marrying-old. The pk’s 

satisfy the following: 

- Sepaade restricts the majority of early-born daughters of Teeria men to be women-

marrying-old: pX ≤ 0.4.  

- The vast majority of early-born daughters in the non-Teeria lines are women-marrying-

young: pY = pZ = p ≥ 0.8. 

- Virtually all late-born daughters are women-marrying-young: pX'= pY' = pZ' = p', and p ≤ p'.  

 

Assumption G4 (Marriage and lines of descent). All women marry. All men marry (if possible). 

Men and women of particular generation groups marry and rear children according to the 

following table: 

 

Men of generation 

group … 

… Are eligible to marry 

women-marrying-old (women-

marrying-young) from groups: 

… Rear daughters 

belonging to groups: 

Xn Z'n-1, Xn ( X'n,Yn ) Xn+1, X'n+1 

Yn X'n,Yn ( Y'n, Zn ) Yn+1, Y'n+1 



Zn Y'n, Zn ( Z'n, Xn+1 ) Zn+1, Z'n+1 

 

 

Assumption G5 (Net Reproductive Rates).  Women-marrying-young each rear 1
yn  early-born 

daughters and 2
yn  late-born daughters, where 1 2

y yn n≥ > 0.  Women-marrying-old each rear 

on early-born daughters. These net reproductive rates are fixed and satisfy the restrictions 

1 2
y yy on n n n≡ + ≥  and 2

yon n≥ > 0.  

 

In summary, Assumption G1 and G2 define the model primitives to be lineages and generation 

groups. Assumption G3 assigns group-specific marriage parameters – proportions of women 

marrying young – that vary by lineage but not by fahan.  Assumption G4 states that participation 

in marriage is universal and restricts the possible marital relations between generation groups, 

conditional on the woman’s age at marriage.   Assumption G5 imposes uniform reproductive rates 

on women-marrying-young and women-marrying-old and restricts the reproductive capacity of the 

latter relative to the former. Assumptions G4 and G5 form the core of the maternal reproductive 

assumption.  

 

Life-cycle flows 

 

To develop intuition for the population dynamics, we constructed a life-cycle flow diagram that 

represents the maternal model as a Markov chain with growth.  In Figure 1, the Markov states 

correspond to sizes of the six female generation groups extant at any time: X, X', Y, Y', Z, and Z'.  

Transitions between states are understood to be reproductive flows with mothers of one lineage 

rearing daughters of another lineage by virtue of marrying fathers who belong to that lineage.  In 

the flow diagram, the nodes represent the states and the edges represent the state transitions.  

The arrows are labeled with the conditional rearing rates and the reproductive flows are read from 

mother’s group to daughter’s group.  For instance, there are four flows into the X state from the 

Z’, X, X’, and Y states.  That is, daughters of group X are reared by mothers of groups Z’, X, X’, 

and Y.  This is a direct translation of the maternal equation for group X.  The other states are 

treated similarly. 

    (Figure 1 here ) 

 

The maternal equations 

 
Assumptions G1-G5 yield the following system of maternal equations: 

 



    Xn+1 = no⋅(1-pZ')Z'n-1 + no⋅(1-pX)Xn + ny1⋅pX'X'n + ny1⋅pYYn 
    X'n+1 = ny2⋅pX'X'n + ny2⋅pYYn 
    Yn+1 = no⋅(1-pX')X'n + no⋅(1-pY)Yn + ny1⋅pY'Y'n + ny1⋅pZZn 
    Y'n+1 = ny2⋅pY'Y'n + ny2⋅pZZn 
    Zn+1 = no⋅(1-pY')Y'n + no⋅(1-pZ)Zn + ny1⋅pZ'Z'n + ny1⋅pXXn+1 
    Z'n+1 = ny2⋅pZ'Z'n + ny2⋅pXXn+1 
 

The system is linear, second-order, and homogeneous.  Observe that, conditional on birth order, 

the differences only show up in the proportion that marry young in each generation group (pk). In 

the next section, we characterize the explicit solution to the maternal system.  

 

To understand how these equations are derived, consider the intergenerational mapping from 

mother to daughter group given in Table A.  The mapping is based on the age-at-marriage rules 

specific to each lineage (Assumption G4). Specifically, the table identifies the daughter groups 

that marry men of fahan n and become mothers of daughter groups of fahan n+1.  Notice that the 

daughter groups marrying men of fahan n are spread over fahans n-1, n, and n+1. This spread 

arises due to the variation within a group in terms of the timing of marriage (young or old) and of 

child bearing (early- or late-born). 

 
Table A.  Mother generation groups identified with daughter generation groups N+1 
 
DAUGHTER 

GROUPS 
N+1 

IDENTIFIED MOTHER GROUPS 
(DAUGHTER GROUPS MARRYING MEN OF FAHAN N)   

 Z’n-1 Xn X’n Yn Y’n Zn Z’n Xn+1 

Xn+1 WMO WMO WMY WMY     
X’n+1   WMY WMY     
Yn+1   WMO WMO WMY WMY   
Y’n+1     WMY WMY   
Zn+1     WMO WMO WMY WMY 
Z’n+1       WMY WMY 

 
WMY – women (mothers) marrying young, WMO – women (mothers) marrying old 
 

 

Each lineage marries its men once per fahan. Men of lineage Y from fahan n sire daughters Yn+1 

and Y’n+1. Consider early-born daughters Yn+1 in the far left column. Reading across the row, we 

see that four groups of fahan n daughters marry into lineage Y and become mothers bearing 

children Yn+1. These mothers comprise X’n and Yn daughters marrying old, and Y’n and Zn 

daughters marrying young.  Now consider late-born daughters Y’n+1. These daughters come from 

only those groups able to marry young: Y’n and Zn. Men of lineage Y never marry Z’ or X 

daughters because these daughters are born in the same period as when the men are supposed 

marry, thus they are too young to marry. 



 

Under Assumptions G4 and G5, the size of each daughter group is simply the number of mothers 

rearing daughters into that group multiplied by the associated net reproductive rate.  Then it is 

straightforward to derive the maternal equations for lineage Y: 

 
    Yn+1 = no⋅(1-pX')X'n + no⋅(1-pY)Yn + ny1⋅pY'Y'n + ny1⋅pZZn 
    Y'n+1 = ny2⋅pY'Y'n + ny2⋅pZZn 
 

The maternal equations for lineages X and Z are derived similarly.  This establishes the system of 

maternal equations asserted above. 

 
3. The steady state 
 

In the model, mothers beget daughters within and across cohorts at different rates associated 

with different vital coefficients, which suggests that population growth and the age distribution will 

change over time.  When the reproductive flows are balanced so that all maternal cohorts grow at 

the same constant rate, we say that the dynamical system has reached a steady state.  

 

PROPOSITION. The system of maternal equations has a unique and stable steady state 

characterized by the largest root of the characteristic equation, f(r) = 0. 

 

Proof. The details are left to the Appendix.  Briefly, the proof proceeds as follows.  First, we 

transform the maternal equations into a first-order system xn+1 = Axn where x is a vector of state 

variables, one for each maternal group, and A is a square transition matrix.  With a parameter 

restriction, the transition matrix A has special properties that allow us to apply the Perron-

Frobenius theorem for nonnegative matrices.  We then argue that the system has a unique and 

stable steady state as a direct implication of the theorem.  The reader is referred to Tuljapurkar & 

Caswell Ch. 2 for a more comprehensive treatment of these and other matrix methods. 

 

Below, we characterize steady state growth and prove the growth propositions in the text, 

assuming that that there exists a unique and stable steady state. 

 

Characterizing the steady state 

 

In the steady state, all extant groups grow at the same rate.  Let r* be the gross rate of steady- 

state growth.  If r* is known, the steady-state population dynamics are simply:  

 

     Xn+1 = r*Xn      Yn+1 = r*Yn      Zn+1 = r*Z'n 



     X'n+1 = r*X'n      Y'n+1 = r*Y'n      Z'n+1 = r*Z'n 

 

Substituting into the maternal equations, 

 

     r*Xn = no⋅(1-pZ')(r*)-1Z'n + no⋅(1-pX)Xn + ny1⋅pX'X'n + ny1⋅pYYn 

     r*X'n = ny2⋅pX'X'n + ny2⋅pYYn 

     r*Yn = no⋅(1-pX')X'n + no⋅(1-pY)Yn + ny1⋅pY'Y'n + ny1⋅pZZn 

     r*Y'n = ny2⋅pY'Y'n + ny2⋅pZZn 

     r*Zn = no⋅(1-pY')Y'n + no⋅(1-pZ)Zn + ny1⋅pZ'Z'n + ny1⋅pXr*Xn 

     r*Z'n = ny2⋅pZ'Z'n + ny2⋅pXr*Xn 

 

we obtain a system of six linear homogeneous equations.  In matrix form: 

 

     xn+1 = r*xn = Λ(r*)⋅xn 

 

     [Λ(r*) - r*⋅I]xn = 0 

 

where:        xn ≡  ( Xn, X'n, Yn, Y'n, Zn, Z'n ) 

 

and: 

 

   no(1-pX) ny1⋅pX' ny1⋅pY   no(1-pZ')(r*)-1 

    ny2⋅pX' ny2⋅pY 

 Λ(r*)  ≡  no(1-pX') no(1-pY) ny1⋅pY' ny1⋅pZ 

      ny2⋅pY' ny2⋅pZ 

   ny1⋅pXr*   no(1-pY') no(1-pZ) ny1⋅pZ' 

   ny2⋅pXr*     ny2⋅pZ' 

 

 

and I is the identity matrix.  Characterizing the steady state is then equivalent to solving an 

ordinary eigenvalue problem.  The solution is obtained by finding the roots of the characteristic 

polynomial f(r) = det [Λ(r) - r⋅I] taking r* to be the largest root. 

 

After simplifying, the characteristic polynomial reduces to: 

 

     f(r) = (r2 - bXr + cX)(r2 - bYr + cY)(r2 - bZr + cZ) - r4(ny1)3⋅pXpYpZ 

 



where bX = no(1-pX) + ny2⋅pZ' cX = no⋅ny2(pZ' - pX) 

bY = no(1-pY) + ny2⋅pX' cY = no⋅ny2(pX' - pY) 

bZ = no(1-pZ) + ny2⋅pY' cZ = no⋅ny2(pY' - pZ) 

 

Interestingly, there is a correspondence between the three factors that comprise the first term in 

f(r) and three lineage “subsystems” constituting a partition of the life-cycle flow diagram.  For 

example, the second term, r2 - bYr + cy, can be derived as the characteristic polynomial fY(r) that 

solves the maternal equations: 

 

     r*X'n = ny2⋅pX'X'n + ny2⋅pYYn 

     r*Yn = no⋅(1-pX')X'n + no⋅(1-pY)Yn . 

 

These are the same equations for X'n and Yn above minus the interaction terms v⋅pY'Y'n and 

v⋅pZZn.  In the flow diagram, one can visualize an isolated subsystem comprised of X' and Y with 

no flows coming in or out of the subsystem.  Similarly, the other terms of f(r) can be derived as 

characteristic polynomials: fX(r) = r2 - bXr + cX from the closed maternal system of Z'n and Xn, and 

fZ(r) = r2 - bZr + cZ from Y'n and Zn. The characteristic polynomial can thus be written as: 

 

     f(r) =  fX(r)⋅fY(r)⋅fZ(r) - r4(ny1)3⋅pXpYpZ . 

 

Viewing the characteristic polynomial from the subsystems perspective allows us to intuit the 

propositions and their implications. This is particularly true of the case of complete Sepaade 

where pX = 0 thus annihilating the fourth interaction term.  
 

To simplify the analysis and concentrate on the impact of Sepaade we assume that the two non-

Teeria lineages are symmetric with respect to the proportion of early born women who marry 

young, and that all three lineages are symmetric with respect to the proportion of late born 

women who marry young.  That is, pY=pZ=p, and pY'=pZ'=p'.  Substituting: 

 

     f(r) = (r2 - br + c)2(r2 - bXr + cX) - r4(ny1)3⋅p2pX 

 

where:  b = no(1-p) + ny2⋅p' c = no⋅ny2(p' - p) 

bX = no(1-pX) + ny2⋅p' cX = no⋅ny2(p' - pX) 

 

Note that f(r) is of degree six. The largest root r* can be computed numerically but we can also 

write down qualitative conditions for steady state growth in terms of the parameters. These will be 

inequalities based on the boundary condition f(r*) = f(1) = 0. 



 

Growth in the steady state 

 

The growth propositions place restrictions on the vital parameters no, ny1, ny2 – these are 

interpreted as net reproductive rates from mother to daughter, consistent with our maternal model 

assumption. Though women that marry young have more children than those that marry old, ny > 

no, we assume that women that marry young bear no more children in their middle age (third 

period of life) than do women who marry old, ny2 ≤ no. This assumption is consistent the 

evidence that women-marrying-old try to have as many children as possible, whereas women-

marrying-young are likely to have already of borne at least one son and may not be interested in 

more children in her middle age. (Recall sons look after moms.)   

 

ASSUMPTION. ny2 ≤ no, and ny2·p' ≤ 1 

 

The assumption allows us to prove a useful lemma, which establishes the necessary and 

sufficient condition for growth.  

 

LEMMA.  f(1) (<,=,>) 0 iff r* (>,=,<) 1. 

 

Proof.  See the Appendix. 

 

The lemma, in turn, yields the main growth proposition directly. 

 

PROPOSITION.  A necessary and sufficient condition for steady state growth r* ≥ (≤) 1 is given by: 

 

     (ny1)3p2pX ≥ (≤) [(1-no)(1-ny2⋅p') + (1-ny2)no·p]2·[(1-no)(1-ny2⋅p') + (1-ny2)no·pX] 

 

Proof:  Rewriting the characteristic polynomial, we have: 

 

     f(r) =  (r2 - br + c)2(r2 - bXr + cX) - r4(ny1)3⋅p2pX 

 =  [(r - no)(r - ny2⋅p') + (r - ny2)no·p]2·[(r - no)(r - ny2⋅p') + (r - ny2)no·pS] - r4(ny1)3⋅p2pX  

 

Then: 

 

     f(1) = [(1 - no)(1 - ny2⋅p') + (1 - ny2)no·p]2·[(1 - no)(1 - ny2⋅p') + (1 - ny2)no·pX] - (ny1)3⋅p2pX        

 



By the Lemma, f(1) (<,=,>) 0 iff r* (>,=,<) 1 which yields the desired condition and proves the 

Proposition.  

 

We can now apply the proposition to study some special parametric cases: 

 

1. Full symmetry: pX = p = p' 

 

r* ≥ (≤) 1  (ny1+ny2)p + no(1-p) ≥ (≤) 1 

 

2. Partial symmetry: pX = p ≠ p' 

 

r* ≥ (≤) 1  (ny1+ny2)p + no(1-p) + (1-no)ny2(p'-p) ≥ (≤) 1 

 

3. Complete Sepaade: pX = 0 

 

r* ≥ (≤) 1  [(1-no)(1-ny2·p') + (1-ny2)no·p]2(1-no)(1-ny2·p') ≤ (≥) 0 

 

4. Incomplete Sepaade: pX > 0 

 

r* ≥ (≤) 1   [(1-no)(1-ny2·p') + (1-ny2)no·p]2[(1-no)(1-ny2·p') + (1-ny2)no·pX] 

 ≤ (≥) (ny1)3p2pX  

 

The growth rate r* describes the growth rate of the total population in the steady state. All 

lineages will r* in the steady state when there are active flows connecting all groups (see the flow 

diagram). This condition is always satisfied except for the case of Complete Sepaade.  

 

The case of Complete Sepaade is conceptually distinct because it shuts off key flows that may 

result in lineages growing at separate rates and possibly dying out. This possibility can be seen 

directly from the flow diagram. Setting pX = 0 shuts off all flows from lineage X into lineage Z. In 

particular, there become no external flows into lineage Z’. The best lineage Z’ can do is sustain 

itself in the special case of ny2·pZ’ =1 and pZ’ = 1. Otherwise, it slowly dies out. If it dies out then 

there are no flows into the subsystem formed by Z and Y’. Recall that the growth rate of this 

subsystem can be described by fZ(r) = r2 - br + c. But there are is a large range of parameter 

values for which this population declines and dies out. Then there are no flows into the 

subsystem formed by X’ and Y. But the growth rate of his subsystem is also given by fY(r) = r2 - br 

+ c, so that if the prior system died out so eventually will this one. We now have all the groups 

dying out except X. Lineage X sustains itself if and only if no ≥ 1.  



 

The case of Complete Sepaade not only produces potential differences in the growth rates of 

lineages but also more specific results.  

 

PROPOSITION.  With Complete Sepaade, we have the following steady state results.  

(i) The total population and the Teeria lineage X grow at rate r* = no.   

(ii) If ny2 <no, the Teeria population completely dominates the non-Teeria population.  

(iii) If no < 1 all the lineages populations die out. The Teeria population survives if no ≥ 1 and the 

non-Teeria lineages die out when ny2 is sufficiently small.   

 

Proof:  We have pX = 0 and pX' = p' which implies that the characteristic polynomial (*) reduces to  

 

f(r) = [(r - no)(r - ny2⋅p') + (r - ny2)no·p]2·[(r - no)(r - ny2⋅p')]       

 

      = [fN(r)]2 [fX(r)];  fN(r) = fZ(r) = fY(r) 

 

Clearly, the roots of fN(r) and fX(r) include no and ny2·p'; no is the largest of these two roots since 

ny2·p' ≤ ny2 ≤ no by the Assumption. Solving fN(r) = 0 yields the other two roots, each with 

multiplicity two.  We are interested in r*, the largest root r* = max(no,r).  But fN(no) = no(no - ny2)p 

≥ 0 which means that r ≤ no since fN(r) is strictly increasing near its largest root. Thus, r* = no.  

 

We associate the roots of f(r) with the growth rates of each lineage: the roots of fX(r) correspond 

to the Teeria lineage while the roots of fN(r) correspond to the non-Teeria lineages.  With r* = no, 

fX(no) = 0 and the Teeria growth rate is no. Since fN(no) = no(no - ny2)p ≥ 0, the non-Teeria grow 

at a slower rate when ny2 < no unless p = 0. 

 

A necessary and sufficient condition for the non-Teeria lineages to die out is: fN(1) = (1 - no)(1 – 

ny2⋅p') + (1 – ny2)no·p > 0. This condition holds if no<1. The condition also holds with no ≥1 

when ny2 < 1 is sufficiently small and p > 0.  This completes the proof. 

 

The above propositions only describe growth rates in the steady state. When the growth rates of 

the lineages are different, then growth rates capture which lineages come to completely dominate 

the population. However, even when lineage growth rates are the same, there can be dramatic 

differences in the lineage population levels. This is true of both incomplete and complete 

Sepaade. Consider Complete Sepaade. There is one special case in which all lineages grow at 

the same rate. This is when ny2 = no. However, whenever ny1 >0 the level of Sepaade is higher 

and often by many magnitudes (see example…)    



 

Another way the steady state results are not indicative of dynamics is highlighted by the transition 

dynamics. Consider Complete Sepaade. We know that in the steady state r*=no. Thus, if no < 1, 

all lineages will eventually die out. However, this might take a long time and there might be 

dramatic growth before this happens. When ny = ny1 + ny2 is large this is exactly what happens 

(see example ?).  In the example, the rate of convergence is particularly slow because complete 

Sepaade has birthing taking place every two periods.  

 

 

4. Perturbation and simulation analysis (incomplete) 
 

Perturbation analysis allows us to measure the contribution of each vital coefficient to population 

growth.  Growth elasticities with respect to the vital coefficients are calculated and compared to 

simulation results. 

 
We conjecture the following comparative dynamic that across steady states: dr*/dpX > 0, 

d(Xn/Yn)/dpX > 0 and d(Xn/Zn)/dpX > 0. The first conjecture is that the population growth rate is 

unambiguously increasing as the proportion of Terria women-marrying-young increases.  The 

second and third conjectures describe the ratio of the population of lineage X to lineages Y and Z 

respectively. Our simulation results indicate that lineage X grows proportionately larger when 

there are more women-marrying-young in that lineage.      

 

 
Numerical examples 

 

(Ex.1) ny1 = 2, ny2 = 0, no = 2    Analysis of growth level here. 

(Ex. 2) ny1 = 2, ny2 = 1, no = 1 

(Ex. 3) ny1 = 1.75, ny2 = 1, no = 1.5 

(Ex. 4) ny1 = 1.75, ny2 = 1.13, no = 1.76 

 

In each case, compare p' < 1 versus p' = 1.] 

 
 
 
 
 

5. Conclusion  
 
 



The paper examines a particular age-group society, the Rendille tribe of Northern Kenya, and 

develops and solves a “lineage” matrix population model representing this society. The Rendille 

are a particularly interesting case study because their lineage system is integrated with their age-

set and generation group organization. Age-sets of similarly aged males are organized into age-

set lines along three lines of decent (which we denote X, Y, and Z). The lineage system relates 

fathers and their children according to genealogical generations. A rotation through the three age-

set lines distinguishes the generation group of fathers from the next generation group of their 

children. The matrix model maps from one genealogical generation to the next to the next and 

reveals the genealogical dynamics inherent in the Rendille social organization.  

 

We are able to analytically solve the model and prove the existence of a unique globally stable 

dynamic path that converges to a (periodic) steady-state growth path. The steady state growth 

path is characterized with necessary and sufficient conditions for growth of the age-set lines.  

The rules governing marriage as they relate to lineage considerations substantially reduce the 

size and the growth rate of the population; they also induce periodicity in the demographics, and 

dramatically favour one of the age-set lines. Specifically, the institution of Sepaade lead to the 

Teeria (age-set line X) dominating. In the extreme case where Sepaade held back all early-born 

daughters from marrying young, the other age-set lines quickly disappear leaving only the Teeria 

line with negative population growth.  

 

More generally, the analysis suggests that matrix population modeling is a powerful tool for 

analyzing the social dynamics of age-group societies. As these societies incorporate similarly 

aged individuals into age-groups that transit the lifecycle together, they display more homogeneity 

than other societies. In our analysis of the Rendille heterogeneity was also limited by clear and 

simple rules on marriage and lineage. Other societies with straightforward marriage rules should 

also be amenable to relatively simple matrix population modeling.  

 

We hope our analysis is also of interest to theoretical population science because of the novel 

way in which we apply the classical Perron-Frobenius methods (e.g. Tuljapurkar & Caswell 1997). 

In biology, for instance, structured-population models typically introduce population dynamics 

along a single dimension, usually age or size; similarly, mathematical models have been used in 

cultural anthropology to study the dynamics of kinship relations or age-group rules but few 

models can tractably accommodate both kinds of dynamics simultaneously.  In contrast, our 

model tracks reproductive transitions across lineage groups (inter-genealogical transitions) as 

well as across age cohorts (inter-generational transitions).  The work here advances the goal of 

integrating the systems of socioeconomic, demographic and lineage organization within a 

coherent dynamic model.   
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Table 1: 

Historical Timeline (incomplete)    
 
 
        
Fahan (n)    Line   Age-set (t) Name Circumcision 

Year 
Marriage 
Year 

  

0 X 0      
0 Y 1  1769 1780   
0 Z 2  1783 1794   
1 X 3  1797 1808   
1 Y 4  1811 1822   
1 Z 5 Irbaandf 1825 1836   
2 X 6 Ilkibugu 1839 1851   
2 Y 7 Libaale 1853 1864   
2 Z 8 D’bgudo 1867a 1878a   
3 X 9 Dismaala 1881a 1892a   
3 Y 10 Irbaangudo 1895a 1908*  
3 Z 11 D'fgudo 1909-10* 1920  

 

4 X 12 Irbaalis 1923 1934   
4 Y 13 Libaale 1937 1948*   
4 Z 14 Irband’if 1951 1962   
5 X 15 D'fgudo 1965 1976   
5 Y 16 Irbaangudo 1979 1990   
5 Z 17  1993 2004   
6 X 18  2007 2018   
6 Y 19  0    
6 Z 20  0    

        
        
      
Each fahan opens with the circumcision of line X (Teeria) men and close with the marriage of line Z men 39 years later
The start of fahan n corresponds to the initiation of line X men of set-set t =3n.      
        
Sepaade begins in t =5 and end in t=17. There are 11 intervening periods.  
   
     
        
 
 
        
Sources: Roth 1991, 2004, ? 
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Figure 1: Life-Cycle Flow Diagram 



APPENDIX 
 
 
A1. The steady state: existence, uniqueness, stability 
 
PROPOSITION. The system of maternal equations has a unique and stable steady state 
characterized by the largest root of the characteristic equation, f(r) = 0. 
 
Proof. As remarked in the text, the proof proceeds in three steps: a transformation of the maternal 
equations into a first-order system, a characterization of the associated transition matrix, and a 
direct application of the Perron-Frobenius theorem. 
 
a. The first-order transformation. Recall that the maternal equations are given by: 
 
     Xn+1 = no(1-pZ')Z'n-1 + no(1-pX)Xn + ny1⋅pX'X'n + ny1⋅pYYn 
     X'n+1= ny2⋅pX'X'n + ny2⋅pYYn 
     Yn+1 = no(1-pX')X'n + no(1-pY)Yn + ny1⋅pY'Y'n + ny1⋅pZZn 
     Y'n+1= ny2⋅pY'Y'n + ny2⋅pZZn 
     Zn+1 = no(1-pY')Y'n + no(1-pZ)Zn + ny1⋅pZ'Z'n + ny1⋅pXXn+1 
     Z'n+1 = ny2⋅pZ'Z'n + ny2⋅pXXn+1 
 
Substituting Z’n-1 = (ny2⋅pZ')-1Z’n - (pX/pZ’)Xn in the first equation and expanding Xn+1 in the fifth and 
sixth equations, we obtain: 
 
     Xn+1 = [no(pZ'-pX)/pZ’]Xn + ny1⋅pX'X'n + ny1⋅pYYn + [(no/ny2)⋅(1-pZ’)/pZ’]Z’n 
     X'n+1= ny2⋅pX'X'n + ny2⋅pYYn 
     Yn+1 = no(1-pX')X'n + no(1-pY)Yn + ny1⋅pY'Y'n + ny1⋅pZZn 
     Y'n+1= ny2⋅pY'Y'n + ny2⋅pZZn 
     Zn+1 = [ny1⋅no(pZ'-pX)(pX/pZ’)]Xn + (ny1)2⋅pXpX’X’n + (ny1)2⋅pXpYYn + no(1-pY')Y'n + no(1-pZ)Zn  

   + [ny1⋅pZ'+(ny1⋅no/ny2)⋅(1-pZ’)(pX/pZ')]Z’n 
     Z'n+1 = [ny2⋅no(pZ'-pX)(pX/pZ’)]Xn +ny2⋅ny1⋅pXpX’X’n + ny2⋅ny1⋅pXpYYn  

   + [ny2⋅pZ'+no(1-pZ’)(pX/pZ')]Z'n 
 
This yields the first-order linear system xn+1 = Axn where x ≡ (X,X’,Y,Y’,Z,Z’) and: 
 
 
  no(pZ'-pX)/pZ’ ny1⋅pX' ny1⋅pY   (no/ny2)(1-pZ’)/pZ’ 
 
   ny2⋅pX' ny2⋅pY 
 
 A  ≡  no(1-pX') no(1-pY) ny1⋅pY' ny1⋅pZ 
 
     ny2⋅pY' ny2⋅pZ 
 
  ny1⋅no(pZ'-pX)(pX/pZ’) (ny1)2pXpX’ (ny1)2pXpY no(1-pY') no⋅(1-pZ) ny1⋅pZ'+(ny1⋅no/ny2)(1-pZ’)(pX/pZ') 
 
  ny2⋅no(pZ'-pX)(pX/pZ’) ny2⋅ny1⋅pXpX’ ny2⋅ny1⋅pXpY   ny2⋅pZ'+no(1-pZ’)(pX/pZ') 
 
 
 
b. Characterization of A.  To proceed, we impose the following regularity conditions: 
 
ASSUMPTION.  0 < pX ≤ p ≤ pX' = p' ≤ 1 
 
[ ASSUMPTION. (weaker)  p'j ≥ pk for j = Z,X,Y and k = X,Y,Z.  The proportion of late-born women 
marrying young from one lineage is no smaller than that of early-born women from the 
subsequent lineage. ] 



Notice that the Assumption restricts the parameter space to the case of Incomplete Sepaade 
(pX>0).  Complete Sepaade (pX=0) is a singular case that is dealt with separately; see the main 
text for further discussion.  However, we have found in simulations that Complete Sepaade does 
constitute a limit point of the Incomplete Sepaade case as p  0. [Expand on this in the text?] 
 
The crux of the proof is the following result: 
 
THEOREM (PERRON-FROBENIUS).  Let A be an irreducible, aperiodic, nonnegative square matrix. 
Then there exists an eigenvalue of A, r*, satisfying the following: 
 

i) r* is real and positive, 
ii) r* > |ri| for all other eigenvalues ri, 
iii) the left and right eigenvectors u and v associated with r are uniquely positive up to 

scaling, 
iv) r* is a simple root of the characteristic equation of A. 

 
(Seneta 1973) 
 
DEFINITION.  Let T be a square matrix and let tij(n) denote the entry in the ith row and jth column of 
Tn where n is a positive integer. 

i. T is nonnegative when tij(1) ≥ 0 for all (i,j).  
ii. T is irreducible when for each (i,j) there exists b such that tij(b) > 0.  
iii. T is aperiodic when the greatest common divisor of those b for which tii(b) > 0 is 1 for all i. 

 
To apply the theorem, we need only verify that the transition matrix A from the first-order 
transformation is nonnegative, irreducible, and aperiodic. 
 
Nonnegativity.  By the Assumption, it is immediate that all of the entries of A are non-negative. 
 
Irreducibility and aperiodicity.  Consider the incidence digraph of A illustrated in Figure 3.  The 
vertices and arcs correspond to maternal groups and flows, respectively.  Accordingly, aij > 0 iff 
there is an arc from vertex i to vertex j and aij

(n) > 0 iff there exists a path from vertex i to vertex j 
of length n.  It turns out that A is irreducible iff the incidence digraph of A is strongly connected 
(Minc 1988); that is, a path exists between any two vertices in the graph. To verify that A is 
strongly connected under the Assumption is straightforward. [Footnote: With pX=0, the proof fails 
because the incidence digraph of A is no longer strongly connected.]  Moreover, the presence of 
loops (1-cycles) in the graph immediately implies that A is aperiodic. 
 
Thus we have shown that A satisfies the conditions of the Theorem. 
 
 



Figure 3:  Incidence digraph of the transition matrix A 
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b. Identification of the steady state. The Perron-Frobenius theorem says that A has a single 
dominant eigenvalue r* > 0 with positive left and right eigenvectors u and v.  We know that r*, u, 
and v are jointly determined by A and its characteristic equation, f(r) = 0.  When u and v are 
normalized so that uTv = 1, the singular value decomposition (SVD) of A yields: 
 

An = (r*)n·vuT + O(nm-1|r2|n) 
 
where r2

 is the second-largest eigenvalue of A and m is the multiplicity of r2. [Footnote: the term 
O(nm-1|r2|n) is bounded in the sense that there exist real numbers C, D such that C· nm-1|r2|n ≤ 
O(nm-1|r2|n) ≤ D· nm-1|r2|n for all n.]   
  
Since the theorem guarantees that r* > |r2|, it follows that (r*)n >> |r2|n for large n: as n increases, 
the second matrix term in the SVD expression becomes increasingly dominated by the first term 
so that An  (r*)n·vuT.  We then have xn = Axn-1 = … = Anx0  (r*)n·(vuTx0) or xn+1  (r*)·xn.  
Regardless of the initial population x0, the system always converges to a state wherein all 
maternal groups grow at a constant rate r*: it is in this sense that the steady state is globally 
stable.  Furthermore, since u and v are uniquely positive among normalized eigenvectors, the 
steady-state group distribution is unique given x0.  We conclude that (r*,u,v,x0) completely 
identifies the steady state. 
 
 
A2. Proof of the Lemma 
 
LEMMA.  f(1) (<,=,>) 0 iff r* (>,=,<) 1. 
 
Proof: Our task is to show that f(r) (<,=,>) f(r*) = 0 when r (<,=,>) r* for all values of r under 
consideration.  First, rewrite the characteristic polynomial as: 
 
     f(r) =  (r2 - br + c)2(r2 - bXr + cX) - r4(ny1)3⋅p2pX 
 =  [(r - k1

N)(r - k2
N)]2·[(r - k1

X)(r - k2
X)] - r4(ny1)3⋅p2pX 

 =  [fN(r)]2·[fX(r)] - r4(ny1)3⋅p2pX 
 
where the ki

X's and ki
N's are the roots of fX(r) and fY(r) = fZ(r), resp.; assume k1

j ≤ k2
j without loss of 

generality.  Then: 
 
k1

j + k2
j =  bj = no(1-pj) + ny2·p' 

   k1
j·k2

j =  cj = no⋅ny2(p'-pj) 
 
        k1

j = (bj - dj)/2, k2
j = (bj + dj)/2 

 
where dj = (bj

2 - 4cj)1/2.  All of the ki
j's are real since: 

 
bj

2 - 4cj =  [no(1-pj) + ny2·p']2 - 4no⋅ny2(p'-pj) 
 =  no2(1-pi)2 + 2no(1-p)ny2⋅p' + (ny2⋅p')2 - 4no⋅ny2(p'-pi)  
 ≥  no2(1-pi)2 + 2no(1-pi)ny2⋅p' + (ny2⋅p')2 - 4no⋅ny2(1-pi)p' 
 ≥  [no(1-pj) - ny2·p']2 
 ≥  0 
 
Moreover, the ki

j's must be non-negative since bj ≥ 0 and cj ≥ 0 under the assumption p'≥pj.  Now 
consider the following factorization: 
 
     fj(r) =  (r - no)(r - ny2·p') + (r - ny2)no·pj 
 
Note that fN(r) (<,=,>) fX(r) when r (<,=,>) ny2, given pX ≤ p.  By assumption, 0 ≤ ny2·p' ≤ ny2 ≤ no 
and pj ≤ p' which implies that fj(0) ≥ 0, fj(ny2·p') ≤ 0, fj(ny2) ≤ 0, and fj(no) ≥ 0.  Also, fX(r) (≤,≥) 0 



implies [fN(r)]2·[fX(r)] (≤,≥) 0.  Since f(r) is continuous, we can apply the intermediate value 
theorem repeatedly to obtain 0 ≤ k1

N ≤ k1
X ≤ ny2·p' and ny2 ≤ k2

N ≤ k2
X

 ≤ no. 
 
 

Figure 2: Illustration of the Lemma proof 
 

  
 
 
To locate the roots of f(r) proper, note that [fN(r)]2·[fX(r)] (<,=,>) r4(ny1)3⋅p2pX whenever f(r) (<,=,>) 
0 by definition and [fN(r)]2·[fX(r)] ≤ 0 ≤ r4(ny1)3⋅p2pX for ny2·p' ≤ r ≤ k2

X.  The coefficient of the r6 
term in the expansion of f(r) is positive so f(r) is strictly increasing near its largest root r*; clearly r* 
≥ k2

X.  It follows that f(r) ≤ 0 for ny2·p' ≤ r ≤ r* and f(r) > 0 for r* > r.  Since 1 ≥ ny2·p' by 
assumption, we have f(1) (<,=,>) 0 iff r* (>,=,<) 1.  This completes the proof of the Lemma. 
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