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1 Introduction

Age heaping is the result of preferences for some digits in self-reported age over the adjacent
digits, and measuring and correcting for this clustering at specific ages has long drawn the
attention of demographers. More generally, digit preference can be found in many data
sets, typical examples include self-reported age at menopause, self-reported height or weight,
blood pressure measurements or number of cigarettes smoked per day (Canner et al., 1991;
Crawford et al., 2002; Hessel, 1986; Klesges et al., 1995; Rowland, 1990).

Preferred digits usually are 0 and 5, but even numbers may also be preferred over odd
numbers, or some numbers, like 13, may show a tendency to be avoided. Consequently digit
preference leads to frequency distributions with unusual spikes at the preferred digits at the
expense of the neighboring numbers.

All methods to quantify, and thereafter to correct for digit preference originate from the
idea that “the figures for adjacent ages should presumably be rather similar” (Siegel and Swanson,
2004, p. 136). The most simple indexes of age preference compare the frequency of the
preferred digit to what would be expected for a rectangular or linear distribution in some
neighborhood of the target value. More complex approaches like Whipple’s index or My-
ers’ Blended Index (Myers, 1940) yield an index of preference for each terminal digit over a
defined age range (Ewbank, 1981; Shryock et al., 1976; Siegel and Swanson, 2004).

In this paper we present a model which takes the idea that for the true distribution the
counts for adjacent digits should be similar as a starting point. However, apart from this
smoothness assumption no further restrictions are put on the true distribution. The observed
frequency distribution results from the true, but unobserved one through misclassification of
a certain proportion of the less attractive digits towards the preferred ones.
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Following an idea of Eilers and Borgdorff (2004), we can put this process of age misstate-
ment in the framework of a so called composite link model (Thompson and Baker, 1981) and
introduce the idea of a smooth latent distribution via a penalization term in the likelihood.
Thereby we may estimate both the latent distribution and the misclassification probabilities
by a straightforward extension of a penalized iteratively reweighted least squares algorithm
(McCullagh and Nelder, 1989).

In the following section we will introduce the basic methodology, referring more technical
details to the appendix. Before applying our model to a demographic data set in section 4,
we demonstrate its performance in a simulation study (see section 3). We conclude with an
outlook to additional work in progress.

2 The Methodology

We denote by γ = (γ1, . . . , γJ)′ a smooth discrete sequence of J counts, which is the expected
value of the unknown latent age distribution. In a more general setting we could allow γ to
depend on some covariates, however, here we define it as γ = exp(Xβ), with β smooth and
X simply the identity matrix.

The actually observed counts are denoted by y = (y1, . . . , yJ)′, which are realizations from
a Poisson distribution with expected values E(yj) = µj . An additional matrix C ‘composes’
the vector µ from γ. In other words, the ‘composition matrix’ C describes how the latent
distribution is mixed before generating the data, and it is characteristic for the process
that generated the data. When modelling misreported age distributions, C is a matrix that
‘adjusts’ the expectation γj in order to get µj , which are the expected values of the actually
observed counts.

2.1 Estimating the model

If we could observe the ‘true’ counts zj , j = 1, . . . , J , then the zj would be distributed
according to a Poisson model with smooth expectation γj :

P (zj) =
γ

zj

j e−γj

γj !

and γ = exp{Xβ}, where the covariate matrix X simply represents the sequence of ages. Us-
ing a generalized linear model (GLM) approach (McCullagh and Nelder, 1989; Nelder and Wedderburn,
1972), we estimate the values of β with an iteratively reweighted least squares (IRWLS) al-
gorithm. In matrix notation we solve the system of equations:

X ′W̃Xβ = X ′W̃ {W̃−1(z − γ̃) + Xβ̃} ,

where W̃ = diag(γ̃).
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Of course, in reality, we do not observe z, but the counts given by y, with µ = E(y) = Cγ,
or µi =

∑
j cijγj . Adapting the maximum likelihood equations leads to a modified version of

the IRWLS equations, as is shown in Appendix A:

X̆ ′W̃ X̆β = X̆ ′W̃ {W̃−1(y − µ̃) + X̆β̃} , (2.1)

where W̃ = diag(µ̃) and X̆ can be interpreted as a ‘working X’ and its elements are x̆ik =∑
j cijxjkγj/µi.

2.1.1 Smoothness and Penalty

When X in ln(γ) = η = Xβ is the identity matrix, it is clear that smoothness of β implies
smoothness of γ. In GLMs or CLMs we can force the solution vector β to be smooth by
subtracting a roughness penalty from the log–likelihood (see Eilers and Marx, 1996):

L∗ = L− λ

2
‖Ddβ‖

where Dd is the matrix that computes the d–th differences. We similarly can proceed with
the modified IRWLS, and the system of equations 2.1 simply becomes:

(X̆ ′W̃ X̆ + P )β = X̆ ′W̃ {W̃−1(y − µ̃) + X̆β̃} (2.2)

where P = λD′
dDd.

The additional parameter λ tunes the smoothness of the parameters β. To choose the
value of the smoothing parameter λ an appropriate information criterion, such as Akaike’s In-
formation Criterion (AIC) (see Hastie and Tibshirani (1990)) is minimized. Alternatively the
Bayesian Information Criterion (BIC) can be minimized (Schwarz, 1978). See Appendix B
for more details.

3 Simulation study

Before we apply the model to a demographic dataset, we want to demonstrate the performance
of the method in a small simulation study. The parameters in the study are chosen to mimic
a realistic scenario.

The true latent distribution is designed to follow a Gompertz distribution, that is, the
expected values γ of the true counts are derived from this Gompertz density (multiplied by
a fixed sample size). The misreporting mechanism of this ‘true’ distribution is achieved with
a given ’composition’ matrix C that creates the expected values µ of the actually observed
counts. The misreporting proportions are given in Table 1. From this composed distribu-
tion, the actual counts y are simulated as random numbers from a Poisson distribution with
means µ.
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Finally, based on these data, the Penalized Composite Link Model (PCLM) is estimated,
as outlined in the previous section, leading to estimates of both γ and the misreporting
proportions. An example of such simulation is given in Figure 1. Here the sample size is
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Figure 1: Example of simulated data set, assumptions are shown in Table 1

10000 deaths from age 28 to 102. The structure of the transfer pattern is given in Table 1.

Transfer pattern Proportions
from digit 9 to 0 0.3
from digit 0 to 1 -0.2
from digit 4 to 5 0.2
from digit 5 to 6 -0.1

Table 1: Choice of transfer patterns for the simulation study.

In the simulation study these steps were replicated 500 times, leading to 500 estimates of
γ and of the proportions given in Table 1. Figure 2 shows the ’true’ distribution of γ, the
expected value for the misreported distribution µ, the median and the interval given by the
1%- and 99%-quantile of the 500 fitted distributions.
Figure 3 summarizes the fitted misreporting proportions for each transfer pattern1. Whereas

1In this figure a negative value has to be intended as proportion of counts at age j which has been
misreported from j + 1 to j.
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Figure 2: Summary of 500 simulations from a misreported age distribution. The ’true’ dis-
tribution is depicted in blue; the red histogram shows the expected misreported distribution;
the gray shadow presents the interval given by the 1%- and 99%-quantile of the fitted distri-
butions. The black line present the median of the fitted distribution

the variability is larger where observations are fewer, the medians of the estimated proportions
are always rather close to the true values.

4 Application to the population of the Philippines

Manifest digit preferences are found in the age distribution of the population of the Philippines
by single years of age in 1960 (United Nations, 1962). These are census data and show
systematic peaks at ages ending in 0 and, less prominently, 5. Correspondingly troughs are
found at ages ending in 9, 1, 4 and 6. Moreover, particular heaping occurs at ages 12 and 18.

Shryock et al. (1976) have already used this example for measuring digit preferences with
different indexes and Alho and Spencer (2005) used this example to show a possible problem
with published population statistics.

Under the assumption that the actual age distribution is smooth, and that the heavy
spikes are created by digit preferences we can apply the PCLM to estimate the true latent
age distribution and the misreporting proportions.

Figure 4 shows the estimated latent age distribution and Figure 5 gives the estimated
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Figure 3: Summary of the misreporting proportions from 500 simulated distribution. Each
panel presents a particular transfer pattern. The ’true’ misreporting proportions given in the
simulation are depicted in red.

misreporting pattern. Note that the misclassification increases with age, and it is relatively
heavier for ages ending with 0 than with 5.

5 Outlook

The method we have presented in this paper shows how it is possible to deal with digit pref-
erences, that result in age heaping, by combining the concept of penalized likelihood with the
composite link model. The PCLM allows extraction of both the latent distribution and the
pattern of misclassifications, which goes beyond the quantitative assessment of digit prefer-
ences provided by many indexes. The only assumption that is made about the underlying
true distribution is smoothness.

In the current applications we specify a limited number of misclassification patterns,
here mainly relating to preference for numbers ending in 0 and ending in 5, which receive
contributions from their adjacent neighbors. By adding a further penalty, we are currently
exploring the possibility of allowing for more general patterns of misstatement, to include
both the potential for exchanges between digits which are immediate neighbors, as well as
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Figure 4: Distribution of the Philippines population by single age in 1960 and fitted distri-
bution by Penalized Composite Link Model.

for exchanges between digits that are 2 steps apart (like e.g. age 78 misreported as 80 etc.).
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Figure 5: Misreporting probabilities from specific ages to others. Philippines, 1960.
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Appendix A

Assume that zj has a Poisson distribution with expectation γj and linear predictor ηj =
ln(γj) =

∑
k xjkβk with the logarithm as link function. The method of maximum likelihood

is used to estimate the parameters β. McCullagh and Nelder (1989, equations 2.12 and 2.13)
showed that in this case the ML equations are:

J∑

j=1

(zj − γj)
v(γj)

∂γj

∂βk
=

J∑

j=1

(zj − γj)xjk = 0 (A-1)

where v(γj) is the variance when E(z) = γj . In the case of a CLM, the new Poisson distributed
variable is yi with expectation µi = E(yi) =

∑
j cijγj . Hence adapting equations A-1 we find

that
I∑

i=1

(yi − µi)
v(µi)

∂µi

∂βk
= 0

Because
∂µi

∂βk
=

J∑

j=1

cij
∂γj

∂βk
=

J∑

j=1

cijxjkγj

we get the likelihood equations
I∑

i=1

(yi − µi)x̆ik = 0

where x̆ik =
∑

j cijxjkγj/µi. In this way we can proceed as for the GLM and the IRWLS
equations become in matrix notation:

X̆ ′W̃ X̆β = X̆ ′W̃ {W̃−1(y − µ̃) + X̆β̃}

where W̃ = diag(µ̃).

Appendix B

The AIC is equivalent to:

AIC = Dev(y|µ) + 2Dim = 2
I∑

i=1

yi · ln
(

yi

µi

)
+ 2Dim

where Dev(y|µ) is the deviance and Dim is the effective dimension of the model. For the
latter we follow Hastie and Tibshirani (1990) to take the trace of the ’hat’ matrix H that is
implicit in equation 2.2:

ẑ = X̆β̂ = X̆(X̆ ′WX̆ + P )−1(X̆ ′W )z = Hz
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An alternative approach is given by the Bayesian Information Criterion (BIC) in which just
the second part is altered:

BIC = Dev(y|µ) + lnnDim = 2
I∑

i=1

yi · ln
(

yi

µi

)
+ ln nDim

A grid search of λ is normally sufficient to pick up the minimum of AIC and BIC.
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