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Abstract

The Joint United Nations Programme on HIV/AIDS (UNAIDS) has developed the
Estimation and Projection Package (EPP) for making national estimates and short
term projections of HIV prevalence based on observed prevalence trends in antenatal
clinics. Understanding uncertainty in its projections and related quantities is important
for more informed policy decision making. We propose using Bayesian melding to assess
the uncertainty around the EPP predictions. Prevalence data as well as information on
the input parameters of the EPP model are used to derive probabilistic HIV prevalence
projections – a probability distribution on a set of future prevalence trajectories. We
relate antenatal clinic prevalence to population prevalence and account for variability
between clinics using a random effects model. Predictive intervals for clinic prevalence
are derived for checking the model. We discuss predictions given by the EPP model
and the results of the Bayesian melding procedure for Uganda where prevalence peaked
at around 28% in 1990; the 95% prediction interval for 2010 ranges from 1% to 7%.

Keywords: Antenatal clinic prevalence; HIV Population prevalence estimation; Pre-
dictive distribution; Random effects model; UNAIDS Estimation and Projection Pack-
age; Uncertainty assessment.

1 INTRODUCTION

In this article we propose a way to obtain probabilistic projections of HIV prevalence for gen-

eralized epidemics in countries with little detailed knowledge of HIV prevalence. Generalized

HIV/AIDS epidemics are epidemics in which the disease is spread widely in the population.

To qualify as generalized an epidemic must affect one percent or more of pregnant women
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(Ghys et al. 2004), and by this definition many countries in sub-Saharan Africa have gener-

alized HIV/AIDS epidemics. In countries with high HIV prevalence the HIV epidemic has

a big impact on the population, and prevalence predictions are necessary to understand and

plan for the effects on the population in the future.

UNAIDS has to produce current estimates and short-term projections of HIV prevalence

for all countries with significant HIV epidemics. To do this, it developed the Estimation and

Projection Package (EPP). EPP is software that implements a differential equation model.

It is designed to reproduce in a parsimonious way the overall dynamics of a generalized HIV

epidemic. In order to meet the UNAIDS requirement to produce estimates and projections

for all countries with more than one percent of pregnant women infected with HIV, the EPP

model must be general, robust and very simple; simple because many countries with signif-

icant HIV epidemics have very little data to describe those epidemics. For most countries

in sub-Saharan Africa the main, and often only, source of information on HIV prevalence

is the prevalence of HIV among women who attend antenatal clinics. As a result, the EPP

model is designed to produce past and future trends in HIV prevalence that are consistent

with measured trends in antenatal clinic prevalence. For a small number of countries, larger

quantities of higher quality data are available. It is conceivable that for those countries one

could design a model that is better able to capture the complex dynamics revealed by the

data. However, this would violate the requirement that a single consistent method be used

to produce estimates and projections of HIV prevalence for all affected countries, and could

confuse comparison of the estimates between countries and perhaps across time for the same

country.

The EPP 2005 software and supporting documentation can be downloaded from

www.unaids.org. EPP is used by UNAIDS, the World Health Organization (WHO), and

a variety of national and other agencies to produce HIV prevalence estimates. EPP is of-

ten used in combination with Spectrum, an extended sex- and age-differentiated population

model (Stover 2004; Stover et al. 2006). Spectrum uses the prevalence trends generated

by EPP to produce annual sex- and age-specific HIV incidence, deaths and other quantities

of interest. EPP and Spectrum together have been used to analyse the global impact of

HIV/AIDS prevention and treatment programs, and WHO has proposed using their com-

bined output to estimate the number of people in need of antiretroviral treatment.

Uncertainty is an inherent component of forecasts of future trends in HIV prevalence,

and understanding this uncertainty is crucial for policy decision making. In 2003 UNAIDS

included information on uncertainty in its estimates and projections by calculating and

presenting plausibility bounds (Grassly et al. 2004). These bounds were derived by combin-

ing the results of a bootstrap method with expert opinion regarding the range of possible

epidemic curves. As noted by Morgan et al. (2006, p.iii77): “plausibility bounds do not rep-

resent and should not be interpreted as formal statistical confidence intervals”. A Bayesian
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framework solves this problem by providing a mechanism for including expert opinion while

still producing formal statistical confidence intervals.

We propose Bayesian melding to obtain probabilistic projections of HIV prevalence.

Bayesian melding was first developed to estimate the rate of increase of whale populations

(Raftery et al. 1995; Poole and Raftery 2000) and was successfully applied to policy-making

in that context. Bayesian melding fully accounts for information describing uncertainty in

both the inputs and outputs of a deterministic model. In this paper we discuss the applica-

tion of the Bayesian melding procedure to the EPP model. In Section 2 we describe the EPP

model, in Section 3 we explain the Bayesian melding procedure and a random effects model

for HIV prevalence, in Section 4 we present results for urban HIV prevalence in Uganda, and

in Section 5 we discuss possible improvements to the methodology.

2 THE ESTIMATION AND PROJECTION PACK-

AGE

The Estimation and Projection Package (EPP) was developed by UNAIDS to satisfy two

major constraints. First it has to be able to capture the main dynamics of an HIV epidemic in

any country, often without detailed knowledge of the transmission patterns in that country,

and second it has to be simple enough to be used by national planning officials in a wide

variety of developing countries. The UNAIDS Reference Group on Estimates, Modeling

and Projections (UNAIDS Reference Group on Estimates, Modelling and Projections 2002)

recognized that there are many complex models that incorporate patterns of risk behavior

and mixing and provide useful tools for understanding the spread and control of HIV. Many

of these models are unsuitable for the task at hand, however, because they require a large

number of biological and behavioral parameter values that are not available from all the

countries that require estimates and projections of HIV prevalence.

UNAIDS has developed a simple epidemiological Susceptible-Infected model that satisfies

these two constraints. The population at time t is divided into three groups, a not-at-risk

group X(t), an at-risk group Z(t) and an infected group Y (t). The model assumes a constant

non-AIDS mortality rate µ and fertility rate b and does not represent migration or age

structure. Time-evolving prevalence (the fraction of the population infected) is modeled by

estimating four parameters, r, f0, t0 and φ. The parameter r is the rate of infection, f0 is

the fraction of the population in the at-risk category at the start of the epidemic, t0 is the

start time of the epidemic and φ represents the behavioral response.

The influence of each of these parameters on the shape of the epidemic is shown in

Figure 1. Note the standard overall shape of the epidemic in all of the plots. The fraction of

the HIV negative population infected each year, or incidence, increases to a maximum and

declines thereafter. As long as the number of new HIV infections is greater than the number
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Figure 1: The influence of r, f0, t0 or φ on the shape of the epidemic curve while holding
other parameters fixed at the values r = 2, f0 = 0.4, t0 = 1980, φ = 0.

of AIDS deaths, the prevalence rate increases. An epidemic peaks when the incidence and

mortality rates are about equal. After the peak the prevalence rate comes down because

the number of AIDS deaths continues to increase as a result of the lag between becoming

infected and dying of AIDS. An epidemic stabilizes when the number of new HIV infections

equals the number of AIDS deaths.

The greater the rate of infection r, the faster prevalence increases at the beginning of

the epidemic, as can be seen from Figure 1a. If a fraction f of the population is at risk of

HIV infection, every infected person infects r · f people each year (r · f is called the force of

infection). The fraction of population in the at-risk category at the start of the epidemic f0

influences when and at what prevalence the epidemic peaks. If a higher proportion of the

population is initially at risk, the epidemic will peak at a higher level, as is apparent from

Figure 1b. The epidemic is shown for two different start years in Figure 1c. Changing the

start year, t0, does not change the shape of the epidemic, only its timing.

The behavioral response, φ, influences the level at which the epidemic levels off after

the peak, as shown by Figure 1d. The parameter φ is positively related to steady state

prevalence. Negative values of φ correspond to a situation in which new members of the

population change their behavior when they see others dying of AIDS, so that fewer of them

enter the at-risk group. Positive values of φ correspond to the opposite situation in which a

larger fraction of new members enter the at-risk group. This can be thought of as reflecting

a gradual recruitment situation in which pockets of the population that were previously
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isolated, perhaps by geography or culture, are exposed to infection.

The rates at which the sizes of the groups change – through recruitment, behavior and

infection – are described by three differential equations:



















dX(t)
dt

=
(

1 − f
(

X(t)
N(t)

, f0, φ
)

)

E(t) − µX(t),

dZ(t)
dt

= f
(

X(t)
N(t)

, f0, φ
)

E(t) −
(

µ + r Y (t)
N(t)

+ λ(t)
)

Z(t),

dY (t)
dt

=
(

r Y (t)
N(t)

+ λ(t)
)

Z(t) −
∫ t

0

(

r Y (τ)
N(τ)

+ λ(τ)
)

Z(τ)g(t − τ)dτ,

in which N(t) is the total population, N(t) = X(t)+Z(t)+Y (t), and µ is the non-HIV death

rate. The function g(τ) specifies the HIV death rate τ years after infection. Survival after

infection is assumed to have a Weibull(2.4, 10.5) distribution, so that the median survival

time is 9 years. The start year of the epidemic is defined as the first year in which people

are infected; the time at which a fraction λ0 of the at-risk group Z moves to the infected

group Y . Similar epidemics can be generated with either a larger, earlier pulse or a smaller,

later pulse. We set λ0 = 0.001 so that the start year is the year in which 0.1% of the at-risk

population gets infected. The initial pulse is modeled such that λ(t) = λ0 · δ(t − t0) where

δ(t) is the Dirac Delta function, and so
∫

∞

−∞
λ(t)Z(t)dt = λ0Z(t0).

The population being modeled is aged 15+. New members of the population are the

ones who survive to age 15. When entering the population, they are assigned to either the

not-at-risk group X(t) or the at-risk group Z(t). The total number of new members at time

t, E(t), depends on the population size 15 years ago, the birth rate and the survival rate

from birth to age 15. The birth rate is applied to both the uninfected and infected groups,

taking into account the HIV-related fertility reduction experienced by the infected group and

the transmission of HIV from mother to child. A fraction of the new 15-year-old members

enter the at-risk group Z(t) at time t. This fraction is given by f
(

X(t)
N(t)

, f0, φ
)

and depends on

the fraction of the population in the not-at-risk group, the fraction initially at risk, and the

behavioral response φ. The remainder of the new 15-year-olds enter the not-at-risk group

X(t).

3 BAYESIAN MELDING FOR THE EPP MODEL

3.1 Bayesian Melding

The EPP model transforms the input θ, consisting of the four input parameters (r, f0, t0, φ),

into a series of HIV prevalence rates, ρ, for the population during a given period. We

denote the EPP model by M , so that ρ = M(θ). The Bayesian melding procedure combines

information on inputs and outputs. Expert knowledge provides a prior distribution q(θ) for

the inputs. The observed prevalence rates provide a likelihood L(ρ) for the model output.

Then the posterior distribution of the inputs is given by:
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π(θ) ∝ q(θ)L(θ) = q(θ)L(M(θ)).

The inputs have prior density q(θ), and so ρ = M(θ) also has a prior density because it

is a transformation of θ. The posterior distribution of the output is given by

π(ρ) ∝ q∗(ρ)L(ρ), (1)

where q∗(ρ) is the prior on the outputs induced by the prior on the inputs and the EPP

model. It is not possible to write q∗(ρ) analytically, and so we approximate it using Monte

Carlo methods.

We approximate the posterior distribution in (1) by drawing a random sample from it

using the Sampling Importance Resampling algorithm (Rubin 1987; Rubin 1988):

1. Sample {θ1, ..., θn} from the input prior q(θ) on θ = (r, f0, t0, φ).

2. For each θi, determine the corresponding series of prevalence rates, ρi = M(θi), by

running the EPP model. This gives a sample from the induced prior q∗(ρ) on the

outputs.

3. Form the sampling importance weights for each ρi and thus for each θi:

wi =
L(ρi)

∑n

i=1 L(ρi)
. (2)

4. Sample from the discrete distribution of {θ1, ..., θn} with probabilities wi to approxi-

mate the posterior distribution for the inputs, and do the same for the outputs.

3.2 Priors on input parameters

The Bayesian melding procedure requires that we specify a joint prior distribution for the

four input parameters θ = (r, f0, t0, φ). Separate sources of information are used to specify

each of these priors, and so we define these four parameters to be independent a priori.

We assume that the rate of infection r can take any value between 0 and 15 with equal

probability, r ∼ U [0, 15], meaning that the average number of people an infected person

infects per year can range from zero to 15 times the fraction at risk. The start year of the

epidemic t0 has a uniform discrete distribution on {1970, 1981, . . . , 1990}.

The fraction initially at risk f0 can be any value between zero and one, f0 ∼ U [0, 1]. We

assume a uniform prior on [0, 1] for the fraction entering the at-risk population f
(

X(t)
N(t)

, f0, φ
)

.

These two priors together define a prior for the behavioral response φ. In the model the

fraction entering the at-risk group Z(t) is given by:

f
(X(t)

N(t)
, f0, φ

)

=
exp(

(

φχ(t)
)

)

exp(
(

φχ(t)
)

) − 1 + 1
f0

, (3)
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where χ(t) is the difference between the fraction in the not-at-risk group at time t, namely

X(t)/N(t), and the fraction (1 − f0) that was not at risk at the beginning of the epidemic,

so that

χ(t) =
X(t)

N(t)
− (1 − f0). (4)

Using (3), φ can be written in terms of the fractions entering the at-risk group and

initially at risk. With uniform priors on both fractions, the behavioral response parameter

has a logistic distribution with mean 1
χ

log
(

1
f0

− 1
)

and variance π2

3χ2 , and with a prior

estimate f0 = 0.5, the behavioral response is centered around zero. The smaller the prior

estimate of χ the more spread out the prior will be. We set χ = 0.1 meaning that a priori

we expect an average difference of 10% between the current and initial fractions not at risk.

3.3 Likelihood for population prevalence

In many of the countries with generalized HIV/AIDS epidemics, the data available for cali-

brating the EPP model consist of estimated prevalences among pregnant women at antenatal

clinics. We will consider calibration of the EPP model in a country, or a part of a country,

that is considered to be relatively homogeneous in terms of the pattern of the epidemic.

UNAIDS often considers the urban areas of a country to form one such part, and the rural

areas to form another part. Here we assume that the prevalence among the attendees at

an antenatal clinic gives an unbiased estimate of population prevalence (see discussion in

Section 5).

We now derive an output likelihood for the data, namely the antenatal clinic prevalences,

given the model outputs, namely the population prevalences for each year during the obser-

vation period, ρ = (ρ1, . . . , ρT ), where ρt is the overall population prevalence in year t. The

data consist of the number of infected women, Yst, and the number of women tested, Nst,

for clinic s in year t, for the S clinics s = 1, . . . , S. Data are available for clinic s for years

t = t(s, 1), . . . , t(s, Ts), where Ts is the number of years in which data were collected at clinic

s.

We denote by γst the prevalence at clinic s in year t. We assume that Yst ∼ Binomial(Nst, γst),

and that the Yst are conditionally independent of each other given the γst. Antenatal clinic

data often include repeated measurements at the same clinic. To account for this repeated

measurement structure, we approximate the likelihood by modeling Yst on the probit scale

and using a hierarchical normal linear model. We let Wst = Φ−1(xst), where Φ(·) is the

standard normal cumulative distribution function, and xst = (Yst + 1

2
)/(Nst + 1). The con-

stants 1

2
and 1 in the definition of xst are introduced to avoid problems with zeros, and they

also have an approximate Bayesian justification because xst would be the posterior mean of

γst with a noninformative Jeffreys Beta( 1

2
, 1

2
) prior distribution, in the absence of any other

information.
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Our model is then

Wst = Φ−1(ρt) + bs + εst, (5)

bs
iid
∼ N(0, σ2), (6)

εst
ind
∼ N(0, vst), (7)

with

vst = 2π exp
{

Φ−1(γst)
2
}

γst(1 − γst)/Nst. (8)

In our model (5), bs is the clinic random effect for clinic s, assumed to be constant over time.

The error term εst approximates the binomial variation. Equation (8) is an approximation

derived from the binomial distribution of Yst using the delta method.

Bayesian estimation of the model (5)–(7) requires only a prior for σ2, and we use a

standard Inverse Gamma (α, β) prior. To assess values of α and β we considered the results

of fitting the model to urban antenatal clinic data from nine countries in sub-Sarahan Africa,

and chose values of α and β that made this prior distribution spread out enough to amply

cover the results of the model fits: α = 0.58, β = 93.

We now use the model (5)–(7) to derive the likelihood of the data W = (W s : s =

1, . . . , S), where W s = (Wst : t = t(s, 1), . . . , t(s, Ts)), given the population prevalences

ρ = (ρ1, . . . , ρT ). This likelihood follows by integrating out the clinic random effects,

b = (b1, . . . , bS), and the random effects variance, σ2, as follows:

p(W |ρ) =

∫

σ2

∫

b

p(W |ρ, b) p(b|σ2)db p(σ2) dσ2 (9)

=

∫

σ2

∫

b

{

S
∏

s=1

p(Ws|ρ, bs) p(bs|σ
2)

}

db p(σ2) dσ2

=

∫

σ2

{

S
∏

s=1

As(σ
2)

}

p(σ2) dσ2,

where As(σ
2) =

∫

bs

∏S

s=1 p(Ws|ρ, bs) p(bs|σ
2) dbs.

The quantity As(σ
2) can be evaluated analytically as follows. Let dst = Wst−Φ−1(ρt) and

ds =
(

ds,t(s,1), . . . , ds,t(s,Ts)

)

. Then ds = bs1Ts
+ εs, where 1Ts

is a Ts-vector of ones and εs =
(

εs,t(s,1), . . . , εs,t(s,Ts)

)

. Thus ds ∼ MVNTs
(0,Σs), where Σs = σ2JTs

+ V s, with JTs
defined

as a Ts×Ts matrix all of whose elements are one, and V s = diag (vst : t = t(s, 1), . . . , t(s, Ts)).

It follows that As(σ
2) is equal to the MVNTs

(0,Σs) density evaluated at ds. The error

variance vst is approximated as in (8) with γst = xst.

We have now reduced the integral (9) to a one-dimensional integral. This has no ana-

lytic solution and we evaluate it using numerical quadrature, specifically the globally adap-

tive interval subdivision method (Piessens et al. 1983), as implemented in the R function

integrate.
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3.4 Assessing model fit: Predictive distribution for clinical preva-

lence

We assess the fit of the overall prediction procedure, including the EPP model itself, the

Bayesian melding estimation method and the approximations we have used in deriving the

likelihood, using out-of-sample predictive distributions. We are therefore interested in the

predictive distribution of observed prevalence at clinic s at a future time u > T . Clinic-

specific prediction intervals can be used to evaluate the predictive quality of the EPP model

by forecasting prevalence using data before a given point in time and comparing prediction

intervals with observed clinic prevalence after that point.

A sample from the posterior distribution of population prevalence for observed and future

years, p(ρ|W ), is given by the Bayesian melding output, ρ(1), . . . , ρ(J), where now ρ includes

future prevalences up to year u, so that ρ = (ρ1, . . . , ρT , . . . , ρu). The predictive distribution

of the future transformed observed prevalence at clinic s and time u is

p(Wsu|W ) =

∫

ρ

∫

bs

p(Wsu|bs, ρ) p(bs|ρ, W )dbs p(ρ|W )dρ.

A Monte Carlo approximation to this is

1

J

J
∑

j=1

p(Wsu|b
(j)
s , ρ(j)

u ),

where b
(j)
s is one value sampled from p(bs|ρ

(j), W ). This density is proportional to:

p(bs|ρ
(j), W ) = p(bs|d

(j)
s ) (10)

∝ p(d(j)
s |bs)p(bs) (11)

∝ exp

(

−
1

2

Ts
∑

t=1

(d
(j)
st − bs)

2

vst

)

(

1

2
b2
s +

1

β

)

−α− 1

2

, (12)

because d(j)
s |bs ∼ MVNTs

(bs1Ts
, V s) and the prior distribution of bs is proportional to

(

1
2
b2
s + 1

β

)

−α− 1

2

.

We sample from p(bs|d
(j)
s ) using rejection sampling. Then the predictive distribution of

the transformed observed prevalence is

Wsu|b
(j)
s , ρ(j)

u ∼ N(ω(j)
u + b(j)

s , v(j)
su ),

where ω
(j)
u = Φ−1(ρ

(j)
u ), and v

(j)
su is given by (8) with γsu = Φ(ω

(j)
u + b

(j)
s ). Transforming the

prevalence back to its original scale gives a sample from the posterior predictive distribution

of the future observed prevalence.
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4 RESULTS

Data describing prevalence at urban and rural antenatal clinics are available from the Epi-

demiological Fact Sheets on HIV/AIDS and Sexually Transmitted Infections 2006 at

http://www.who.int/globalatlas/predefinedReports/EFS2006/index.asp. As an ex-

ample, we will discuss urban prevalence in Uganda, from where antenatal clinic prevalence

data are available through 2002. Prevalence was observed at five clinics in Kampala and

most observations were at two missionary hospitals. Prevalence has been falling since the

early 1990s, as can be seen from Figure 2, which plots observed prevalence against time.
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Figure 2: Posterior distribution of urban HIV prevalence in Uganda over time. Each dot is
an observation, and dots with the same symbol correspond to repeated observations at the
same clinic. Each grey line is a unique trajectory in the posterior sample of epidemic curves.
The dashed lines are the 2.5% and 97.5% quantiles, and the solid black line is the median of
the posterior sample.

We ran the Bayesian melding procedure as described in the previous section for the five

urban clinics in Uganda. We sampled 200,000 combinations of input parameters from their

prior distribution. After calculating the likelihood for each of those inputs, we resampled

3,000 trajectories of which 508 were unique. The trajectory with the largest likelihood was

resampled 107 times. Figure 2 shows the posterior sample of epidemic curves. The decrease

in prevalence is projected to continue until around 2015 when it levels off between 0 and 5%,

with a posterior median of about 1%. Figure 3 shows histograms of the samples of posterior

predictive prevalence for 2005 and 2010. Although there is considerable uncertainty about

the prevalence in any given future year, the results clearly predict a continuing overall decline

in prevalence.

Figure 4 displays the prior density and the histogram of a sample from the posterior

distribution of each of the four input parameters. The posterior mean of the rate of infection

10



Posterior prevalence (%) in 2005

D
en

si
ty

0 5 10 15

0.
00

0.
10

0.
20

Posterior prevalence (%) in 2010

D
en

si
ty

0 5 10 15

0.
00

0.
10

0.
20

0.
30

Figure 3: Sample from the posterior predictive distribution of urban HIV prevalence in
Uganda in 2005 and 2010.

r is 4.5 (95% confidence interval [1.8, 12.4]), meaning that on average each year an infected

person infects a number of people equal to between 2 and 12 times the at-risk fraction of the

population. The posterior median of the start year t0 is 1979 ([1972, 1984]). The fraction

initially at risk f0 is centered around 0.33 ([0.22, 0.43]). The behavioral response φ is negative

with a mean of -6.5 (95% confidence interval [-11, -4.6]). This means that as the number of

AIDS deaths becomes significant, a smaller proportion of 15 year olds are being drawn into

the at-risk group than at the start of the epidemic.

Even though they are independent a priori, the four parameters of the EPP model are

correlated a posteriori. Often the posterior relationship between the parameters is nonlinear.

For example in Figure 5 the rate of infection r is plotted against the start year of the

epidemic t0. This shows the classic “banana shape” often observed in posterior distributions

of parameters of deterministic simulation models of this kind; see Raftery et al. (1995)

for other examples. In this case the banana shape of the posterior arises because the data

contain substantial information about the product of the rate of increase r and the time since

the start of the epidemic (t− t0) but less information on either r or (t − t0) individually, as

can be seen from Figure 4. As a result r · (t− t0) is fairly well identified, leading roughly to

a reflected hyperbola in the plot of the joint posterior distribution of r and t0.

To examine the predictive performance of the EPP model we ran the Bayesian melding

procedure using data describing different truncated historical periods and compared the out-

of-sample predicted prevalences to the observed prevalences. Figure 6 displays the prediction

intervals for urban prevalence based on data through 1994, 1998 and 2002. Each grey line is

a unique trajectory in the posterior sample of epidemic curves, the dotted lines are the 2.5%

and 97.5% quantiles and the solid black line is the median of the posterior sample for each
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Figure 4: Posterior samples (histograms) and prior densities (solid lines) of input parameters
for urban prevalence in Uganda: (a) r; (b) f0; (c) t0; (d) φ
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Figure 5: Sample from the joint posterior distribution of the rate of infection, r, and the
start year, t0, for urban prevalence in Uganda.
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(c) Data through 2002

Figure 6: Posterior urban prevalence in Uganda, based on increasing observation periods.

year.

Figure 6a presents results based on observed prevalence through 1994 (the vertical line).

At that time prevalence was predicted to be declining but there was substantial uncertainty

about future prevalence. Based on the data through 1994 only, the 95% prediction interval for

2010 was [0%, 22%] with a median prediction of 1%. The subsequent clinic observations for

1995–2002 lay well within the posterior intervals for future overall prevalence. (In interpreting

this result, it should be borne in mind that these bounds give predictive intervals for national

urban prevalence and not for individual clinic observations.) Based on data through 1998,

the posterior predictive distribution of prevalence in 2010 was much more concentrated:

[0%, 6%] instead of [0%, 22%], although the posterior predictive median was unchanged at

1%; see Figure 6b. Again the subsequent observations lay within the posterior bounds for

future overall prevalence. Using data through 2002, the 95% prediction interval for 2010 is

[1%, 7%] with median predicted prevalence of 3%; see Figure 6c.

The 2010 posterior predictive distributions based on data through 1994, 1998 and 2002

are shown in Figure 7. As more data became available after 1998, prevalence was no longer

predicted to decrease to zero.

To assess the fit of our overall modeling procedure, including the EPP model itself,

the Bayesian melding method, and the approximations used in deriving the likelihood, we

compared observed clinic prevalence with its predictive distribution, as described in Section

3.4. Figure 8 shows the predictive intervals for the two missionary hospitals in Kampala,

Nsambya and Rubaga – the other clinics do not have data after 1994. Figures 8a and 8b

display prediction intervals based on data through 1994, and Figures 8c and 8d display

the results using data through 1998. For both hospitals at both time points, the observed

future prevalences lay within their prediction intervals. These results are consistent with

the statement that the EPP model combined with the Bayesian melding procedure produces

reasonable predictive intervals.
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Figure 7: Histograms of samples from the posterior predictive distributions of urban HIV
prevalence in Uganda in 2010, based on increasing observation periods.
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Figure 8: Predictive distributions for the two urban clinics Nsambya and Rubaga in Uganda
based on data through 1994 and 1998, compared with the actual observations. The dotted
lines are the 2.5% and 97.5% quantiles and the solid black line is the median of the predictive
distribution for each year.
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5 DISCUSSION

In this article we propose using Bayesian melding to obtain probabilistic projections of

HIV prevalence from the EPP model developed by UNAIDS. EPP generates HIV prevalence

trends for generalized epidemics and is typically fit to trends in the prevalence of women who

attend antenatal clinics. For many countries in sub-Saharan Africa this is the only available

information, a fact that precludes the use of more sophisticated models that require detailed

information describing the behavioral and biological determinants of an HIV epidemic.

Using the Bayesian melding procedure, uncertainty about future prevalence is described

by building probabilistic projections. A random effects model is used to account for differ-

ences between clinics, and out-of-sample predictive distributions are derived and compared

with data to assess the predictive quality of the overall modeling procedure, including the

EPP model and Bayesian melding.

We apply our method to Uganda where a relatively long series of antenatal clinic preva-

lence observations is available. The out-of-sample predictive performance of our method was

good in this example, which lends support to the use of Bayesian melding for describing

uncertainty. This also indicates that the relatively simple EPP model itself is effective at

predicting prevalence, which is reassuring given how widely EPP is used. It also indicates

that the approximations we used in deriving the likelihood have not unduly affected the

procedure’s predictive performance. These include our use of a normal distribution on the

probit scale to approximate the binomial distribution. It would be possible to build a model

that instead uses the binomial response explicitly, but this would be considerably more com-

plicated, and our results suggest that the gain in performance from doing so would be modest

at best.

We base our prevalence predictions on data from antenatal clinics, which is the usual way

in which the EPP model is used. However it has been convincingly argued that prevalence

estimates from antenatal clinic data tend to be biased upward. This is true for various

reasons including the fact that pregnant women tend to have higher HIV prevalence than

the general population because they are by definition sexually active (Zaba et al. 2000), that

urban antenatal clinics tend to be public rather than private and consequently oversample

poorer women who are more likely to be HIV positive, and that rural antenatal clinics tend

to underrepresent remote rural areas that tend to have lower prevalence and where a large

fraction of the population often lives (Saphonn et al. 2002; Boerma et al. 2003).

Nationally representative population surveys have been proposed as an alternative to

antenatal clinic data, particularly the Demographic and Health Surveys (DHS) (Boerma

et al. 2003). For countries with national HIV prevalence estimates, a bias term was included

in the 2005 version of EPP to calibrate the estimates that it produces. There are problems

with this also. The DHS estimates themselves tend to be biased downward largely due to
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non-response. People not living in households, who are often more likely to be HIV positive,

including sex workers living in brothels, are underrepresented because the DHS is a household

survey (Lydie et al. 2004; Zaba et al. 2004; Mishra et al. 2006). The DHS estimates can

also be highly variable, particularly in low prevalence countries where they may be based on

a relatively small number of HIV positive cases.

Future work will extend Bayesian melding for EPP to take account of the DHS prevalence

estimates and information describing possible bias in both antenatal clinic and DHS data.

One possible way of doing this is to add a second likelihood based on DHS data and bias

terms for both antenatal clinic and DHS data. Priors for the bias terms could be set based

on data from other countries.

When constructing HIV projections in the future, the availability and possible effects of

antiretroviral therapy (ART) will also need to be taken into account. So far the availability

of ART is very limited and the effects negligible. Recently Botswana and South Africa were

two of the first countries in sub-Saharan Africa to establish national ART programs. Other

possible model improvements for EPP include additional parameters to model behavioral

change; for example time variation in the force of infection to deal with rapid changes in

behavior occurring in some countries (Ghys et al. 2006). It is not clear that making the

model more complicated will improve its performance, however; whether or not this is the

case in the presence of very limited data is an empirical question.
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