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Spatial Sampling for Demography and Health Survey 
 

Abstract: The recent advances in global position systems (GPS), geographic information 
systems (GIS) and remote sensing (RS) can be exploited for spatial sampling design for 
demographic and health survey. These technologies are, particularly, useful when a 
sampling frame is unavailable and/or location (of household) is important for data 
collection, such as population exposure to ambient air pollution can be greatly impacted 
by the location of residence. Building on these technologies, this article presents a 
methodology of spatial sampling adopted for the respiratory health and demographic 
survey conducted in Delhi and its environs from January-April 2004. The overall goal of 
the survey was to select households that adequately represented exposure to ambient air 
pollution. The proposed methodology involved constructing a sampling frame of 
residential areas and the simulation of weighted random points within the residential 
areas. The simulated locations were navigated with the aid of GPS to identify households 
at these locations and to acquire their consent to participate in the survey; a total of 1576 
households at the 2000 simulated locations were found suitable and participated in the 
survey. The average ambient air pollution at the sample sites was not significantly 
different from the average air pollution observed in the study area, which demonstrates 
the robustness of the proposed sampling method. 
 
Keywords: Spatially sampling, demographic and health survey, GIS and random point. 
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1. INTRODUCTION  
The methods of spatial sampling have been in practice for a while, but their applications 
have been restricted to sample natural phenomena, such as plants, soil types and mineral 
deposition (Amblard-Gross et al., 2004; Dessard and Bar-Hen, 2005; Di Zio et al., 2004; 
Fleishman et al., 2005) and continuous phenomena, such as air pollution (Arbia and 
Lafratta, 2002). The application of spatial sampling to sample human population, 
however, is relatively new. With the increasing interests in the role of place and space in 
the theories of social-sciences, recording spatial contexts of demographic and health data 
and hence spatial sampling design is becoming increasingly important. Recent literature 
suggests that place and space matters in our day-to-day life (Goodchild and Janelle, 2004; 
Longley et al., 1999) and the local/neighborhood environment can greatly influence 
socio-economic, demographic, economic and health outcomes (Cerin et al., 2006; 
Gordon-Larsen et al., 2006; Liao et al., 2006; Schwartz, 1996). Given the increasing 
importance of understanding spatial contexts, this article demonstrates the use of GPS, 
GIS and RS for constructing a spatial sampling design for demographic and health 
surveys. 
 
An effective spatial sampling design is required to capture spatial contexts. Borrowing 
from the conventional theories of sampling, a myriad of spatial sampling designs has 
been developed to sample natural and/or continuous phenomena (Amblard-Gross et al., 
2004; Angulo et al., 2005; Di Zio et al., 2004; Stevens and Olsen, 2004; Thompson, 
2002). Generally, these designs employ a type of systematic sampling where sampling 
domains are represented by regular polygons as strata and individual grids are selected 
randomly within the identified strata. In sampling human population, however, the goal is 
to sample households from a discrete geographic space with inhomogeneous population 
distribution. Therefore, the methods of spatial sampling adopted in natural sciences 
cannot be directly extrapolated to sampling human population.  
 
Advances in GPS, GIS and RS technologies provide a unique opportunity for 
constructing an effective spatial sampling design. The proposed sampling design can be 
particularly valuable when conventional methods of sampling cannot be implemented 
because of the non-availability of a sampling frame. These new technologies can be 
exploited to identify residential areas, which can serve as an indirect measure of the 
sampling frame of households. This paper stems from our experiences in administering a 
respiratory health and demographic survey of 1576 households in Delhi Metropolitan 
from January-April 2004. The survey aimed at collecting data required to model 
respiratory health outcomes as a function of exposure to air pollution, particularly 
exposure to ambient air pollution and potential confounding (socio-economic and 
demographic) variables. Thus, capturing spatial variability in air pollution at the 
household level was at the heart of formulating the sampling strategy. An additional 
aspect was to assess the contribution of air pollution from different sources at the 
household location.  
 
The article is organized into four sections. After a brief introduction in the first section 
above, the second section presents the background development of spatial-sampling 
methods. The third section describes the database used for constructing a sampling frame 
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of residential areas. The fourth section discusses the implementation strategy, which is 
followed by a discussion and conclusions in the final section.  
 
2. SPATIAL SAMPLING-BACKGROUND: The spatial sampling differs from non-
spatial sampling methods, because a sample is selected based on geographic locations 
and/or their associated characterizes. Borrowing from the theory of conventional 
sampling, a myriad of spatial sampling methods have been developed and tested. The 
methods of spatial sampling have been exploited extensively to sample natural 
phenomena using a regular geometric pattern (Amblard-Gross et al., 2004; Dessard and 
Bar-Hen, 2005; Dumitrescu et al., 2006; Stevens and Olsen, 2004). The main idea behind 
spatial sampling is to determine an optimal sample size and select sampling 
locations/sites {s1, … sn} from which data Z = (Z(s1),…Z(s2)) can be used to estimate 
g(Z(.)) (Cressie, 1990) where g refers to some geographic area/extent. 
 
Spatial sampling methods have been consistently used to collect data for natural 
resources with the main objective of predicting or estimating natural resources in the 
entire geographic extent (Stevens and Olsen, 2004). Unlike conventional methods of 
sampling, spatial sampling does not rely on a sampling frame of entities of interest, such 
as plants and animal species, soil and mineral resources. Because it is impractical to 
construct a sampling frame of natural resources. Therefore, the first step in spatial 
sampling is to construct a frame of a finite population of identifiable geographic units. 
Generally, this is achieved by overlaying a geometric pattern onto the geographic area of 
interest that, in essence, generates a sampling frame by partitioning the geographic extent 
into a finite number of identifiable units N. In the next step, one of the four classic 
methods of sampling – simple random, systematic random, stratified random, cluster 
random – or a combination of two or more of these four can be employed to select n 
sample sites from the set of N units (Cressie, 1990). 
 
An overarching goal of a spatial sampling design is to predict/estimate the variable of 
interest with the least number of monitoring sites. Two methods are usually suggested to 
achieve this, namely space filling (Nychka and Saltzman, 1998) and optimal Bayesian 
design using inhomogeneous Markov chain simulation (Müller, 1998). Much of the focus 
on spatial sampling in recent years been on geometric structure for generating a random 
grid and the optimization with respect to sample size, variance maximization and spatial 
autocorrelation (Dessard and Bar-Hen, 2005; Dumitrescu et al., 2006; Getis et al., 2000; 
Salehi, 2004; Zhu and Stein, 2006; Zhu and Zhang, 2006). The most common regular 
grids are the equilateral triangular grid, the rectangular/square grid and the hexagonal 
grid (Cressie, 1990). Among the regular sampling plans, the equilateral triangular plan is 
the most efficient in terms of averages and maximum Kriging variances (McBratney and 
Webster, 1981). 
 
The optimal sampling design seeks to capture maximum variability by the minimum 
possible sites, which involves an appropriate distance/spacing between sample sites so 
that spatial autocorrelation can be minimized/eliminated. One would discard 
autocorrelated sites for two reasons. First, avoiding spatial autocorrelation reduces 
redundancy. Second, the spatial correlation structure can have further implication for 
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choices regarding spatial-sampling design, estimation and prediction and observational 
method (Salehi, 2004). A model-based approach utilizing such correlation patterns has 
been particularly influential in the geographic survey of mineral and fossil fuel resources 
(Thompson, 2002). Different methods of modeling correlation structure in spatial data are 
discussed by Cressie (1990). 
 

Recent literature on spatial sampling, especially in the context of natural sciences, draws 
attention to variability in ‘inclusion probability’ for identifying n sites (Arbia and 
Lafratta, 2002; Lafratta, 2006). For human and natural phenomena that experience an 
inhomogeneous distribution, it is reasonable to assume differential probability in their 
distribution. As a result, a good spatial sampling design recognizes the spatial 
inhomogeneities in the processes and accounts for them while choosing sample size n and 
sample locations {s1, …,sn}⊂R (Cressie, 1990). In a recent article, Stevens Jr. and Olsen 
(2004) suggest a spatially balanced approach to sampling natural resources by translating 
geographic space into an inclusion probability. In other words, larger geographic areas 
(longer in case of linear features) are more likely to be selected than smaller ones. 
 
The methods of spatial sampling adopted in natural sciences cannot be directly used for 
sampling human population for several reasons. First, most of these methods heavily rely 
on overlaying a regular geometric structure onto the geographic extent of an area to 
identify a finite number of N units and assume homogeneity in each unit. The use of a 
regular grid, however, does not match with the highly irregular shapes of residential 
areas. Therefore, a regular grid design is of little use for constructing a sampling frame of 
households, required for survey based social-science and/or health research.  
 
Second, some households can spread across two adjacent grids, which can violate the 
assumption of independence in the distribution within each grid (cell). Third, overlaying 
a regular grid assigns equal probability to each unit, but the number of households can 
vary across grids. This necessitates the use of differential probability of inclusion in the 
sample design. Fourth, the major focus of these methods has been on collecting data for a 
single attribute. Sampling households, however, requires data collection for hundreds of 
attributes of both households and individuals living in them.  
 
Because of the mentioned constraints, researchers have begun to adopt a more realistic 
approach to spatial sampling with varying probability of selection across discrete 
geographic spaces (Arbia and Lafratta, 2002; Cressie, 1990; Lafratta, 2006; Stevens and 
Olsen, 2004). The research by Lee et al. (2006) is particularly relevant for this study. 
They demonstrate the use of GIS to draw a sample of respondents in an urban 
environment, and their main goal was to understand how built environment 
facilitates/hinders walking and biking. Using the parcel data they constructed a sampling 
frame of built-up environment, and respondents were drawn randomly from the identified 
sampling frame.  
 
Although the conceptual idea of constructing a sampling frame is somewhat similar to 
that adopted by Lee et al. (2006), the proposed sampling design is unique for several 
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reasons.  First, exploiting RS and GIS technologies a sampling frame was constructed 
from scratch. Second, a customized application was designed (in GIS) that simulated the 
required number of sampling points in discrete geographic spaces with varying 
probability of inclusion. Third, it was plausible to integrate various types of data 
(including pollution sources) with each simulated location, because both the simulated 
points and other data were georeferenced. Finally, the interface between GIS and GPS 
allowed navigation and identification of households at the simulated locations and the 
finalization of household inventory.  
 
Evaluation of sample design: The effectiveness of a sampling design can be evaluated 
by how precisely it can estimate population parameters, such as mean and covariance 
(Ackers et al., 2005; Lafratta, 2006). Testing a sample of random points, however, 
requires the test of complete spatial randomness (CSR). In a Cartesian space, it is 
relatively simple to evaluate the performance of randomness in points, in which 
distribution of points can be assumed as the realization of a Poisson process and the 
number of points within an area n(a)  ~ Poisson(λ). Testing randomness in point 
locations, however, can be challenging when a sample is derived from discrete 
geographic spaces with varying probability. Therefore, most studies recommend using 
Monte Carlo simulation with the assumption of an inhomogeneous Poisson distribution to 
construct a theoretical estimate (Cressie, 1990; Lewis and Shedler, 1979), in which n(a) ~ 
Poisson(λ(s)) and the λ varies by space. Although we constructed the theoretical 
estimates of k-statistics by simulating a set of 2000 points 99 times, as recommended for 
a 95% confidence interval (Schabenberger and Gotway, 2005), we also evaluated the 
performance of our sample by comparing the mean air pollution at the selected household 
locations with the average estimate of air pollution in the study area, because an 
overarching goal our sampling design was to draw households that represent exposure to 
ambient air pollution in the study area.  
 
3. DATABASE 
 
The data for this research come from a number of sources, including the National Remote 
Sensing Agency (NRSA) and Survey of India. The following data were used for 
constructing a sampling frame of residential areas and strata identification: 
 

• Particulate matter in a range of 1 to 10µm in aerodynamic diameter recorded at 
113 sites spread across Delhi and its neighboring areas from July-December 2003. 

• Indian Remote Sensing (IRS) satellite imageries – Panchromatic and mutli-
spectral (LISS) mode, 2002. 

• Topographic maps of Delhi and neighboring states from Survey of India. 
• Street map of Delhi from Eicher (EICHER, 2001).  

 
4. Spatial Sampling Design: formulation, implementation and validation 
 
This section describes the methodology adopted for sample selection, its implementation 
and evaluation. The details about these three are organized across six parts – (a) spatially 
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detailed air pollution data, (b) stratification by air pollution levels and their sources, (c) 
constructing a sampling frame of residential areas, (d) random point simulation with 
varying probability of inclusion, (e) household identification at the simulated locations 
and (f) the evaluation of the sample.  
 
4.1 Air Pollution in Delhi and its environs: An overarching goal of the proposed 
sampling was to recruit households such that the ambient air pollution at the selected 
household locations truly represented exposure to ambient air pollution in the study area. 
A secondary goal was to identify potential sources of air pollution around the sample 
sites. Although there are various air pollutants in the environment, we particularly 
focused on airborne particles of different sizes ≤2.5μm and ≤10μm in aerodynamic 
diameter, PM2.5 and PM10, respectively, because these two have been recognized as 
standard measures of air quality worldwide (WHO, 2000). The terms air quality and air 
pollution will be referring to PM2.5 and/or PM10 in the remaining parts of this article.  
 
Given the limited spatial-temporal coverage of air pollution data for the study area, a 
field campaign was conducted and air pollution was monitored from July 23 to December 
3, 2003 at 113 sites in Delhi and its surroundings. For selecting these sample sites, a 
spatially dispersed sampling design was adopted, in which sample sites were identified 
using a two-step process. In the first, a rectangular grid was overlaid onto the entire study 
area, which ensured full coverage of the area. In the second step, a random location was 
simulated within each cell (of size 1x1.5km), and the simulated locations were transferred 
to a Garmin Global Positioning System (GPS) in order to navigate them and examine 
their suitability. Some sites, which were inaccessible, were discarded and re-simulated, 
resulting in a final sample of 113 suitable sites (Figure 1). At each site air was sampled at 
two different times between 7:30AM and 10:00PM every third day. Each sample 
involved four readings – two each in mass and count modes; each reading was based on 
two minutes of sampling in the mass mode and one minute of sampling in (particles) 
count mode.  
 
The Aerocet 531, a real time photometric sampler, from Met One Instruments, Inc., was 
used to collect air pollution data  (Met One Inc, 2003). It is an automatic instrument that 
can estimate particulate mass (PM) in a range of ≤1, ≤2, ≤5, ≤7 and ≤10µm in 
aerodynamic diameters in mass mode, and PM ≤ 0.5 and PM ≤ 10µm in count mode. The 
instrument uses laser technology and uses a right angle scattering method at 0.78μm, 
which is different from gravimetric measurements. The source light travels at a right 
angle to the collection system and detector, and the instrument uses the information from 
the scattered particles to calculate a mass per unit volume. A mean particle diameter is 
calculated for each of the 5 different sizes. This mean particle diameter is used to 
calculate a volume (cubic meters), which is then multiplied by the number of particles 
and then a generic density (µgm-3) that is a conglomeration of typical aerosols. The 
resulting mass is divided by the volume of air sampled for a mass per unit volume 
measurement (µgm-3). 
 
This instrument also recorded relative humidity (RH) and temperature with every sample. 
The main flaw of the instrument is that the mass values can be easily inflated with the 
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increase in RH, especially when it is > 40%  (Thomas and Gebhart, 1994). A standard 
relationship between photometric and gravimetric measurements as discussed by 
Ramachandran et al. (2003) can be used to calibrate the data for relative humidity. Data 
from this instrument were compared against that from gravimetric samplers in order to 
evaluate the robustness of photometric samplers (Kumar, 2006). 
 
4.2 Stratification by air pollution levels and their source identification 
 
On an average we had more than 65 samples at each of the 113 sites, which represent 
sampling at different times of a day and different days of a week. Each sample included 
two readings (four minutes of sampling). Average estimate of PM2.5 and PM10 across six 
months were computed for all 113 sites. These estimates were used to interpolate 
spatially detailed air pollution surfaces in ArcGIS 9.x (ESRI, 2005) with the aid of 
Kriging method, which estimates air pollution at given location as an inverse function of 
distance weighted by spatial autocorrelation among the sample sites (Cressie, 1990; 
Isaaks and Srivastava, 1989). The averages of PM2.5 and PM10 in the study area were 
35.99±2.25μgm-3 and 194.15±22.57μgm-3 (95% CI), respectively. The average values of 
both fine and coarse particles were several folds greater than the recommended standards. 
Figure 2a and 2b shows substantial spatial variability in ambient air pollution in Delhi 
and its surroundings. Using the PM10 surface, the study area was partitioned into three 
strata – less than 1501, 150 to 250 and ≥250m (Figure 3).  
 
Each of the three strata was cross classified by two main sources of air pollution – 
proximity to roads and industrial clusters. The road network and industrial clusters data 
were digitized from topographic sheets and Eicher street maps (EICHER, 2001). It is 
evident from the literature that the concentration of air pollution, especially that of coarse 
particles, decrease exponentially with increase in distance from roads (Violante et al., 
2006). Therefore, short distances from road can greatly impact exposure to air pollution 
from traffic from roads. The proximity to major roads was partitioned into four categories 
–  ≤250, 250-500, 500-1000 and ≥ 1000m and proximity to minor roads into two 
categories only ≤ 250 and > 250m, which were equated with the last two categories of 
proximity to the major road because of the less frequency of vehicles on the minor roads. 
In total, we have four categories of proximity to roads (Figure 4).  
 
Air pollution from industries can have impact up to greater distances, industries are one 
of major sources of fine particles in the study area (Kumar, 2006), which can stay aloft 
longer distances. Therefore, categories of proximity to industrial clusters were spanned 
over longer distances. A total of five categories were identified - namely ≤ 1, 1-2, 2-3, 3-
4 and ≤ 4km, resulting in five strata (Figure 5).  
 
4.3 Constructing a sampling frame of residential areas: In the year 2000, the Census 
of India prepared a household list for the 2001 census enumeration. This list can serve as 
a household sampling frame, but in the absence of household location identifiers, the list 

                                                 
1 Overall PM10 concentration in the study area was substantially higher than the EPA standards in the US 
that are (a) a 24-hour standard = 150µg/m3, and (b) an annual 24-hour standard = 50µg/m3. (EPA, 2005. 
http://www.epa.gov/ttn/oarpg/naaqsfin/pmfact.html) 
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was not adequate to capture spatial variability in air pollution levels and proximity to air 
pollution sources. Therefore, a sampling frame of residential areas was constructed for 
sampling households.  
 
With the aid of satellite RS and GIS technologies different types of land use and land 
cover were identified. A strategy of stepwise exclusion was adopted to generate the frame 
of residential areas. In the first step, vegetation canopy cover (Rv) was extracted using the 
normalized difference vegetation index (NDVI) derived from the 2000 multi-spectral 
(LISS-III) Indian Remote Sensing (IRS-1D) satellite imagery (23.5m spatial resolution) 
and subtracted from the entire study area (R), which resulted in non-vegetated areas |R-
Rv|. The LISS-III multi-spectral imageries were resampled at a higher spatial resolution in 
order to blend them with the panchromatic imagery (6.85m spatial resolution) for 
constructing signatures of different land use types, and a method of supervised 
classification that relied on these signatures was used to extract water bodies (Rw), roads 
(Rrd), barren land (Rb) which were then subtracted from |R-Rv| to extract built-up areas 
(Rbl).  
 
Built up area (Rbl) consists of different land-use types, including residential and industrial 
areas and roads. Extracting residential area alone from satellite remote imageries is a 
challenging task, due to the fact that there are only insignificant differences between the 
spectral signature of industrial and residential areas. Thus, the maps of industrial clusters, 
official building and 50m buffer of streets/roads (digitized from Eicher map of Delhi) 
were merged and subtracted from Rbl resulting in residential areas Rd (Figure 6). 
Subsequently, we could partition each stratum into the components Rd and R-Rd. If an 
entire region, R, is partitioned into k strata then ∪

k

i
dR

1=

 can serve as the sampling frame for 

implementing the suggested methodology. A combination of the three strata of air 
pollution, four strata of proximity to roads and five strata of industrial clusters resulted in 
a total of 60 categories of residential areas (Figure 7).  
 
 
4.3 Weight assignment: A good spatial sampling design recognizes the spatial 
inhomogeneities in the process and accounts for them when choosing a set of sample 
locations (Cressie 1993). Since human population is not distributed uniformly across a 
given area, it is necessary that a differential weighting scheme is used in simulating 
random household locations. Generally, in a stratified random sampling the sample is 
selected in proportion to strata size, and for sampling human population it is reasonable 
to weight the sample by the size of population of each stratum. In the proposed sampling 
design, however, the sample was weighted by the area of each stratum, because the goal 
of our survey was to assess exposure to air pollution and its effect on respiratory health. 
Therefore, weighting sample by area under different air pollution strata was more 
appropriate than the number of individuals in the strata. Moreover, population data were 
not available to match the spatial resolution of air pollution strata.  
 
4.4 Random point simulation: Simulating a random point in a continuous Cartesian 
space requires generating a pair of pseudo random numbers and then plotting each 
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against x-axis and y-axis (generally, both range from 0-1). Simulating geographically 
weighted random points in a discrete geographic space is somewhat different, and is 
implemented in three steps: first, simulating a pair of pseudo random numbers and then 
projecting them into the coordinate system of the background layer (the identified strata 
in our context); second, identifying the container of the simulated location using the 
projected X-Y coordinates; and finally, placing or rejecting a  point location after 
checking the proportion of random points allocated to the identified container (Figure 8).  
 
The allocation of random points in strata can be complicated when the strata are not 
continuous and spread across many polygons. In such cases, the number of points 
assigned to a container (polygons of residential areas in our case) may not be an integer 
value and many smaller strata can be assigned a small fraction (such as 0.2, 0.6). 
Theoretically, the allocation of a point to a polygon cannot be counted as a fractional 
value; it needs to be counted as one. Therefore, the allocation of integer part and the 
decimal part should be handled separately. In the proposed methods, the integer part was 
assigned and simulated first and then decimal part was handled. For the decimal parts a 
threshold value is chosen based on the number of units with fractional values across the 
candidate containers, and points are assigned randomly across the candidate containers 
that qualify the threshold value. The simulation stops when the number of simulated 
points reaches the required sample size even though some candidate polygons can be left 
without any sample point. A customized application was designed in ArcGIS 9.x to 
implement the proposed sampling method (Figure 9). The application requires a 
background layer (or shape) with the weight attribute, and if no weight is assigned area is 
assumed as the default weight.  
 
4.5 Surveying households – experiences: The first step in administering the survey was 
to identify households at the simulated locations and acquire their consents to participate 
in the survey. Household locations were identified with the aid of street maps (Figure 5) 
and global positioning systems (GPS). The simulated point locations were transferred 
onto the street map (Figure 10), which served both to verify that all simulated points were 
in the residential areas, and to identify the neighborhood (locations) of the simulated 
points for navigation purposes. The simulated locations were also loaded onto GPS units 
with point identifiers. To navigate to a location, first we traveled to the neighborhood in 
which the point was located, and then navigated to the point location with the aid of the 
GPS, which has a spatial resolution of less than 5m. Once the household location was 
identified, consent was acquired for the final survey. While navigating the simulated 
locations, two main problems were encountered. First, 11% of the simulated locations 
were placed midway between two or more households. Second, about 2% of points were 
placed onto multi-story household complexes. For both problems, we prepared a list of 
all probable candidate households at the spot, and one was picked up randomly using a 
lottery system. From a list of 2000 simulated random points, only about 1576 turned out 
to be viable for the household survey (Figure 11), and the rest either did not consent to 
participate in the survey or were placed at inaccessible locations. The survey was 
administered in the identified households from January to April 2004.  
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4.6 Effectiveness of the selected ample: To evaluate the effectiveness of our sample, the 
average estimate of air pollution at the household location was compared with that 
reported in the study area.  
 
PM2.5 and PM10 were interpolated at the sampled (household) locations using Kriging 
with optimal parameters that resulted in the least difference in the observed and predicted 
values. The mean of PM2.5 and PM10 were estimated as 35.25±0.21 μgm-3 and 
195.54±2.04μgm-3, respectively. The mean value of PM2.5 and PM10 at the selected 
household locations were not significantly different from that observed in the study area 
(for PM2.5 |x⎯ -μ| = 0.250 p≠t = 0.61 and for PM10 |x⎯ -μ| = 1.38 (p≠t = 0.61)), which leads 
us to conclude that the ambient air pollution at the selected household locations 
adequately represents the exposure to ambient air pollution at the household locations in 
the study area. 
 
5. DISCUSSION AND CONCLUSION 
  
Sample sites for collecting spatial data must be chosen with care, for locational-choices 
can affect the quality of the results from statistical analysis (Müller 1998). Most 
conventional methods adopted for sampling natural phenomena, such as plant species, 
mineral ore or fossil fuel, rely on selecting n units from a set of N derived by partitioning 
the entire geographic extent into N shapes of some regular geometric structure, such as 
hexagon, rectangle or square. In other words, a regular grid of the chosen geometry is 
overlaid onto the study area to identify N units. Assuming contiguity in natural 
phenomena, say soil or air pollution or air pressure, the use of a regular grid seems 
reasonable, but most human activities and their geographic distribution are neither 
contiguous nor distributed uniformly. As a result, regular spatial sampling methods 
cannot be extended to sample human population spread across discrete geographic spaces 
with varying density.  
 
Advances in GIS and RS technology have simplified the collection and analysis of spatial 
data (Longley et al., 1999). These technologies are equipped with tools that enable us to 
integrate data from different sources and different geographic scales. This article has 
demonstrated the application of these technologies for constructing a sampling frame of 
discontinuous residential areas and the selection of households with references to air 
pollution levels and proximity to the sources of air pollution. Using a customized 
application designed in ArcGIS (9.x) (ESRI, 2005) random points weighted by the 
residential area were simulated. Finally, these points were translated into household 
locations with the aid of street maps and GPS technology.  
 
The suggested methodology has several advantages. First, it can be employed to develop 
a sample even when a sampling frame is not available, particularly in developing 
countries where it is almost impossible to acquire a relevant sampling frame. Second, the 
methodology can play a vital role in collecting sample data for research that incorporates 
place/space as an important context of social-behavioral processes. Telephone interviews 
that rely on random digit dialing do not necessarily provide a reliable locational context 
due to widespread usage of mobile/cell phones in recent years. The use of the proposed 



 

 11

methodology, however, can ensure a reliable locational context. Third, the availability of 
spatial context(s) of household locations can provide an opportunity for the analysis and 
modeling of spatial-dependency and causality in social, behavioral and health outcomes; 
e.g., ambient air pollution at household location or in the neighborhood can serve as a 
proxy of exposure and can be associated with respiratory health.  
 
Sampling of households for survey based research has begun to draw attention in recent 
years (Lee et al., 2006) and its usage is likely to increase in the near future with the 
increasing importance of place and space in social science and public health research, 
particularly given the usefulness of understanding – (a) how spatial variations in exposure 
to environmental contaminants affect health outcomes, and (b) how local/neighborhood 
contexts shapes the spatial patterns of social, economic, demographic and behavioral 
outcomes.   
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