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Abstract

We develop a two-stage Bayesian model for producing distributions of multistate life ta-
bles from cross-sectional data on mortality and health. The method involves (1) merging
cross-sectional mortality probabilities disaggregated at as refined a level as possible with
individual-level survey data on health, (2) using Gibbs sampling to sample parameters from
a modified bivariate hazard model of the health and mortality probability outcome, (3) using
a Bayesian ecological inference set-up for producing transition probability matrices from the
Gibbs samples of hazard model parameters, and (4) using standard demographic equations
to convert transition probability matrices into multistate life tables. The method works well
and constitutes a significant advance in multistate life table estimation, which, to date has
been limited in its ability to incorporate covariates in estimation and simultaneously produce
interval estimates of state expectancies. Specifically, Sullivan’s method is the most commonly
used method for estimating state expectancies, like healthy life expectancy (HLE), largely
because the data requirements are less stringent than those for true multistate demographic
life table methods. Sullivan’s method requires only cross-sectional mortality rate data and
cross-sectional prevalence data for health measures (often from surveys), whereas true multi-
state methods typically require panel data, for estimation. Although the data requirements
for Sullivan’s method are minimal, the method is limited in its ability to produce HLE es-
timates for specific subpopulations due to limited disaggregation of data in cross-sectional
mortality files and small cell sizes produced by aggregating cross-sectional survey data. This
limitation precludes the use of multistate life table methods for addressing important social
science research questions, such as determining the extent to which socioeconomic differences
explain racial disparities in HLE, because of the lack of ability to control out the influence
of confounding variables. We show that our method can replicate estimates derived using
Sullivan’s methods, but we also demonstrate its utility for addressing social science questions
like the one above.

KEY WORDS: Increment-Decrement Life Tables, Hazard Models, Gibbs Sampling, Demog-
raphy, Healthy Life Expectancy



Multistate life tables are commonly used in demography to estimate the length of re-

maining life individuals can expect to live in different states. One of the most important

recent applications has been the estimation of healthy life expectancy (HLE)—the length or

proportion of remaining life to be spent free from disability, chronic disease, or other health

problem. To date, the most common method used to estimate HLE has been Sullivan’s

(1971) method, which is not a true multistate method but provides good estimates of HLE

with less stringent data requirements than true multistate approaches (Crimmins, Saito, and

Ingegneri 1997, 2001).

True multistate methods require panel data for computing transition probabilities gov-

erning the movement of individuals in and out of states across time (see Land and Hough

1989 for an exception). Recent advances in multistate methodology includes (1) the use of

multivariate hazard models to produce smoothed transition probabilities for generating mul-

tistate life tables for highly-refined subpopulations (see Land, Guralnik, and Blazer 1994),

and (2) the development of simulation-based methods for constructing interval estimates

of HLE when sample data are used. For example, Laditka and Wolf (1998) use a Markov

process model to simulate life histories and construct interval estimates of HLE from them.

Hayward, Rendall, and Crimmins (1998) bootstrap hazard model parameters, generate tran-

sition probability matrices for each bootstrap sample, and compute multistate tables from

these matrices. Most recently, Lynch and Brown (2005) use Gibbs sampling to sample haz-

ard model parameters, generate transition probability matrices for each Gibbs sample, and

compute multistate tables from them. This approach is similar to the bootstrapping ap-

proach, but it allows for probabilistic interpretation of interval estimates and does not suffer

from the problem of encountering a bootstrap sample with no individuals in low-prevalence

states.

Despite these recent advances, panel data availability remains a significant impediment

to the use of true multistate methods for HLE estimation. Although panel data are more

prevalent now than historically, relatively few panels exist that cover significant portions
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of the age distribution for many birth cohorts, a requirement for producing accurate and

up-to-date estimates of HLE. Sullivan’s method provides a desirable alternative, because it

relies only on independent cross-sectional data for mortality and health for HLE estimation,

both of which are available annually.

Sullivan’s method, however, suffers from important limitations. First, the method is often

applied to dis/aggregated data (e.g., by sex and race) in order to produce subpopulation-

specific HLE estimates, but this approach is limited by two factors: (1) the level of disaggre-

gation possible in the mortality data, and (2) cell sizes for aggregated subpopulations in the

health file. Annual vital statistics mortality data covers the entire population but is generally

measured coarsely—usually only by age, sex, and race. On the other hand, survey health

data can be aggregated to a much more refined level, but sample sizes in health surveys are

often too small to produce stable transition probabilities for highly-refined subpopulations

(see Land et al. 1994). Furthermore, even if cell sizes are adequate, it is unclear how to

combine mortality and health data at different levels of dis/aggregation and compensate for

the uncertainty in HLE estimates such an approach would produce. Yet, it may be desir-

able to obtain estimates of HLE for very specific subpopulations even if the data cannot be

dis/aggregated at that level. Answering key research questions concerning group differences

in state expectancies requires such dis/aggregation.

A second limitation is that, although standard errors of HLE estimates derived from

Sullivan’s method can be obtained (see Molla, Wagener and Madans 2001), the production

of them—as well as the HLE estimates themselves—relies on the linear method for estimat-

ing person years lived in each state within an age interval. Although the linear method is

fairly accurate for narrow age intervals (e.g., one year), it is inaccurate for wider age inter-

vals (Palloni 2000; Schoen 1988). However, using a more accurate method for estimating

person-years-lived (e.g., the exponential method) produces an ecological inference problem

that introduces additional uncertainty into HLE estimates that the traditional method of

estimating standard errors cannot capture.
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In this paper, we (1) briefly review Sullivan’s method for a three-state model (the most

common state space used in HLE research), (2) develop a regression-based extension that

allows the inclusion of covariates—obviating the need for aggregation of health data—and

the production of interval estimates that better capture uncertainty inherent in the method,

and (3) provide an empirical example demonstrating the method’s utility for addressing

social science research questions.

1 Original Sullivan’s (1971) Method

Sullivan’s original method involves three steps. First, a single decrement life table is produced

using mortality data disaggregated at whatever level is desired or possible. Second, data

from a health survey (in theory covering both community and institutionalized persons)

aggregated at the same level are used to obtain proportions of individuals at each age who

are healthy and unhealthy. These proportions are applied directly to the person-years (L(x))

column of a single-decrement life table in order to portion the years lived over an age interval

([x, x+n), where n is the interval width) into healthy and unhealthy years of life (say Lh(x)

and Lu(x), respectively). Finally, the remaining life table calculations are carried out for

these new person years columns. That is, Th(x) =
∑ω

a=x Lh(a) is the total number of person

years to be lived healthy from age x to the oldest age (ω), and eh(x) = Th(x)/l(x), where

l(x) is the total number of individuals alive at age x.

Table 1 presents the generic calculations for a three-state Sullivan table calculated for

every year of age, beginning at age α. The first column, (l(x)), is the number of persons

alive at exact age x. The second column contains the probabilities, p(x), of dying over

the course of the n-year interval beginning at age x. In subsequent sections we discuss the

transformation of these discrete time probabilities into continuous time hazard rates, µ(x),

where µ(x) = lim∆t→0 p(x, x + ∆t)/∆t.

The third column, d(x) is the number of deaths occurring to persons alive at exact age
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x over the [x, x + n) interval. Subsequent values of l(x) can then be computed sequentially

throughout the table: l(x+n) = l(x)− d(x), x = α . . . ω. The fourth column, L(x) contains

the years lived over the age interval. For persons surviving through the interval, L(x) = n.

However, an assumption must be made for the number of years lived by persons dying in

the interval. The two most common assumptions are the linear and exponential (constant

forces) assumption (see Palloni 2000; Schoen 1988). Under the linear assumption, all deaths

occur in the middle of the interval; thus, L(x) = l(x) − (1/2)d(x) = (1/2)[l(x) + l(x + n)].

The fifth column is the sum of the person years lived by persons ages x and above. Finally,

the sixth column is total life expectancy (TLE; e(x))—the number of years to be lived by

those attaining age x—which is computed as e(x) = T (x)/l(x), ∀x.

For the final age interval, we cannot assume that all survivors up to age ω die within

a single n-year period; thus, the table is closed by computing L(x = ω) = l(ω)p(ω)−1 in a

discrete time setting or L(x = ω) = l(ω)µ(ω)−1 in a continuous time setting. In discrete

time, this computation can be viewed as the expected number of trials before obtaining a

success in a negative binomial distribution; in a continuous time, it can be viewed as the

expected waiting time in an exponential distribution.

Sullivan’s extension of the basic life table is straightforward. The seventh column of the

table contains the proportion observed to be healthy in each age interval, πh(x), dervived

from the cross-sectional health data set. The eighth column of the table applies these propor-

tions to the L(x) column to obtain the total healthy person years lived in each age interval.

The subsequent columns of the table repeat the calculations of columns 5 and 6 applied to

the Lh(x) column rather than the L(x) column. The result is an estimate of HLE (eh(x)).

Unhealthy life expectancy (ULE; eu(x)) can then be computed as eu(x) = e(x)− eh(x), and

the proportion of life to be lived healthy can be computed directly as eh(x)/e(x).

Standard errors of Sullivan estimates can be obtained using the binomial variance of the

health proportions (see Molla et al. 2001):
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σ(eh(x)) ≈

√√√√ 1

l2(x)

ω∑
a=x

[Lh(a)2 × (πh(a)(1− πh(a)))2]/N(a),

where N(x) is the number of persons in the health survey sample aged x used to compute

the health proportions. For example, using data from the 2002 National Center for Health

Statistics (NCHS) vital statistics mortality data combined with survey health data from

the 2002 National Health Interview Survey (NHIS; an annually-repeated nationally repre-

sentative data set assessing the nation’s health), we obtained an estimate of eh(50) of 24.3

(s.e.=.13), an estimate of eu(50) of 7.68 (s.e.=.13), and an estimate of e(50) of 31.98 (s.e.=0,

given that the mortality data are population level).

2 Extending Sullivan’s Method

The method we develop reformulates Sullivan’s method as a true multistate method. The

method involves the following steps:

1. Construct data in a suitable fashion.

2. Simulate G samples of “hazard” model parameters (β) using Gibbs sampling.

3. Specify a covariate profile and compute age-specific transition probability matrices,
P(x) x = α . . . ω, for each of the G Gibbs samples of the model parameters.

4. For each of the G age-specific P(x) matrices, transform P(x) into the hazard matrix
µ(x) and generate multistate life tables using standard demographic calculations.

2.1 Constructing the Data

The data for this approach consist of cross-sectional mortality probabilities and an N -

individual cross-sectional survey data set on health. Repeated cross-sectional data may

be used, with year included as a covariate. Age must be measured consistently across data

sets and should be recoded as xi = xi + (1/2)n (halfway through the observed age interval).

Let Xh be an N ×k design matrix (including age) constructed from the health data set, and
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let yh be an N × 1 vector of dichotomous health measures indicating whether respondents

are healthy or unhealthy. Let Xm be a T × j matrix of covariates in the mortality file, and

let ym be a T × 1 vector of mortality probabilities, where T is the product of the number of

combinations of the j covariates’ values for which the mortality data can be disaggregated.

For example, if the mortality data are disaggregated by age, sex, and race, with age having

36 values (e.g., ages 50-85+), sex having two values (male, female), and race having two

values (white, nonwhite), then T = 36× 2× 2 = 144, and dim(Xm) = (144× 3). Typically,

j < k, that is, there are more covariates in the health file than in the mortality file. These

two data sources can be merged by Xm, a one-to-many merge from the mortality file into the

health file. The mortality probabilities will not be unique for every individual, given that

the level of covariate specificity will generally be lower than that contained in the health file.

The resulting file will be N × (k + 2), containing Xh and Y, where Y = [yh ym)].

2.2 Estimating the bivariate hazard model

With the data merged, we can consider a bivariate “hazard” model for Y. The model we use

is a bivariate probit model predicting individuals’ states (healthy, unhealthy, dead) at age

x. Given that no actual transitions are observed, the model is not a true hazard model, but

instead is simply a bivariate probit model. One representation of a typical bivariate probit

likelihood function is:

n∏
i=1

p(yi1 = r, yi2 = s) = Φ2(τ1,1−r, τ1,2−r; τ2,1−s, τ2,2−s, Σ),

where y is the observed bivariate dichotomous outcome, with response r = 0, 1 and s = 0, 1,

Φ2(a, b; c, d) is the standard bivariate normal distribution function evaluated from [a, b] in

the first dimension and from [c, d] in the second dimension, Σ is the error covariance matrix,

with at least one diagonal element (say σ2
11) constrained to 1 to identify the model, τa,b is

the bth threshold that divides the ath dimension of the bivariate normal distribution into
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two bins. The thresholds are such that τ.,0 = −∞ and τ.,2 = ∞, and τ1,1 = X′
iβ(1) and

τ2,1 = X′
iβ(2) are the individual linear combinations of covariates and parameters for each

dimension of the model, where β(.) references the column of β. To make the model fully

Bayesian, we adopt uniform, improper priors on all elements of the matrix β for the health

dimension, point priors of 0 for the elements of β in the mortality equation for which there

are no covariates, and a point prior for Σ : Σ = I.

Estimation of this model follows a data augmentation approach in which the latent data,

Z, thought to underlie the observed dichotomous bivariate responses (Y ) are simulated at

each iteration of a Gibbs sampler (see Johnson and Albert 1999). With the latent data, the

conditional distribution for the parameters reduces to that of OLS regression. The Gibbs

sampler can be implemented as follows:

1. Establish starting values for β.

2. Simulate latent data for both dimensions of Z: (Z|β, X, Y).

3. Simulate β|Z

4. Return to step 2

We use 0 as the starting value for all parameters (the Gibbs sampler is well-behaved

for this model, converging and mixing rapidly). In the second step, latent data are simu-

lated given the observed outcome data and the current parameter values. In a univariate

probit model, this step would involve simulating the latent data from a truncated normal

distribution—zi ∼ TN(X′
iβ, 1), where the point of truncation is 0. An individual with an

observed y of 0 receives a value for z below the threshold, while an individual with an ob-

served y of 1 receives a value for z above the threshold. A typical bivariate probit model

would involve the same sort of simulation from a truncated bivariate normal distribution.

However, in this case, the observed outcome for the second dimension is not dichotomous;

instead, it is a known population probability. Thus, given that Σ = I, an appropriate latent

score for the death outcome is simply Φ−1(yi2), where Φ−1() is the inverse cumulative stan-

dard normal distribution function, and yi2 is the observed mortality probability for the ith
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individual. Given that the mortality probabilities are known, there is no need to simulate

this latent value at each iteration of the Gibbs sampler (although such a step could be easily

included).

The latent trait for the health outcome, on the other hand, must be sampled at every

iteration just as in a univariate probit in order to integrate over the uncertainty presented

by the dichotomous response. Rather than sampling naively until we obtain a latent score

that meets the truncation criteria, we renormalize the appropriate region of the density and

directly simulate from it: zi1 = Φ−1(u×(yi1+(−1)yi1Φ(0))+yi1Φ(0)), where u is a draw from

the U(0, 1) distribution, and the mean and variance of both the inverse normal distribution

function (Φ−1(.)) and the cumulative distribution function (Φ(.)) are µ = X′
iβ(1) and σ = 1,

respectively.

Conditional on the latent data, the model reduces to a bivariate regression model, Z =

Xβ + e, with Z an n× 2 matrix of continuous outcomes, X an n× k matrix of k covariates

(including intercept), β a k × 2 matrix of regression coefficients, e an n× 2 matrix of latent

errors, and Σ = I is an identity matrix. Thus, β|Z ∼ N((XTX)−1(XTZ) , (XTX)−1).

2.3 Computing transition probability and hazard matrices

Transition probability matrices can be generated from the Gibbs samples to be used as input

for multistate life table generation. This process involves three steps, repeated for each of the

Gibbs samples (for clarity, notation is suppressed for each iteration of the Gibbs sampler):

1. Select a vector of covariates, Q, for which to generate the life table (e.g., unmarried
white males with 12 years of education).

2. Generate marginal probabilities for being healthy, unhealthy, or dead for each age in
the age range of the data.

3. Perform an ecological inference step to obtain the transition probabilities from the
marginals obtained in the previous step. This step can be considered a second-stage
Bayesian model applied to the collection P(x), ∀x.
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For the first step, we choose a covariate profile, Q, for which we would like life table esti-

mates. In the second step, given Q, probabilities of being in each state—healthy, unhealthy,

and dead—can be computed for every age by generating the predicted value Ẑ = Q′β, where

age—one of the covariates—is incrementally increased to obtain predicted values for each

age, and then the appropriate bivariate normal integral is computed to obtain the desired

probabilities (thus, the life table model will ultimately be piecewise exponential across age).

Because the error covariance matrix was assumed to be an identity in the model, only two

univariate normal integrals must be computed for each age, and they can be computed as

follows:

pd(x) = Φ(Q′β(2))

pu(x) = (1− pd(x))× Φ(Q′β(1))

ph(x) = 1− (pu(x) + pd(x))

In these equations, pd(x) is the probability of being dead at age x, pu(x) is the probability of

being unhealthy (but alive) at age x, and ph(x) is the probability of being healthy (but alive)

at age x. These probabilities must be computed for all ages in the life table (x = α . . . ω).

Once these age-specific probabilities have been computed, we can establish “starting”

and “ending” probabilities for all the discrete age ranges. The “starting” probabilities for

each age interval must be conditioned on survival. For example, at age x, the starting

probabilities are computed as: pu(x) = pu(x− n)/(1− pd(x− n)) and ph(x) = 1− pu(x).

These starting and ending probabilities constitute the marginals of 2×3 transition prob-

ability matrices for each age interval. However, the marginals are not sufficient to complete

the matrix; instead, we are left with an ecological inference problem. Figure 1 provides a

graphic depiction of this ecological setting. In the figure, ph(x) is the probability of being
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healthy at age x, pu(x) is the probability of being unhealthy at age x (both conditional on

survival to age x), ph(x+n) is the probability of being healthy at age x+n, pu(x+n) is the

probability of being unhealthy at age x + n, and pd(x + n) is the probability of being dead

at age x + n. These marginals sum to 1 in both dimensions.

As the figure shows, we must determine two transition probabilities in the cells of the

table (labeled U and V ) in order to completely determine the table. U and V cannot be

determined as specific quantities; instead, they may take a range of allowable values. At first

glance, given that U and V are probabilities, one may assume they can take values anywhere

on the unit square (bivariate uniform); however, there are a number of constraints that

reduce the allowable values. These constraints can be viewed as priors to make the inference

problem fully Bayesian. First, all entries in the table must be nonnegative, implying that

U ≤ ph(x + n), V ≤ pu(x + n), U + V ≤ ph(x), and U + V ≥ ph(x)− pd(x + n).

Additional constraints can be imposed. First, not all discrete time transition probabilities

matrices can be embedded in a continuous time hazard matrix. However, so long as the

eigenvalues, λ, of a transition probability matrix, P, are distinct, real, and positive, and

det(P) > 0, P is embeddable (see Singer and Spilerman 1976). In order to ensure that the

transition probability matrix is embeddable, the diagonal elements of the matrix, conditioned

on their respective rows, must sum to be greater than 1. This constraint implies U/(ph(x))+

(pu(x + 1)− V )/(pu(x)) ≥ 1.

A second constraint that we impose is that the conditional mortality probability for

persons in state ph at age x is less than the conditional mortality probability for persons in

state pu at age x: (ph(x) − (U + V ))/(ph(x)) ≤ (pd(x + n) − ph(x) + U + V )/(pu(x)). This

constraint can be simplified to obtain: U +V ≥ ph(x)(1−pd(x+n)). This assumption is more

restrictive than that in Sullivan’s method, which assumes that these conditional mortality

probabilities are equal (given that the healthy and unhealthy proportions are applied to the

L(x) column of the completed basic life table). However, this constraint is consistent with

the findings of HLE research (Crimmins and Saito 2001; Lynch and Brown 2005).
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The mortality constraint effectively replaces the fourth original constraint above. That is,

U +V ≥ ph(x)(1−pd(x+n)) is a stronger constraint than U +V ≥ ph(x)−pd(x+n), because

−ph(x)pd(x + n) is always greater than −pd(x + n), given that ph(x) is a proportion. Thus,

we inevitably have 5 constraints. Figure 2 shows the space in the unit square to which U and

V are limited based on the constraints. The first two constraints define the maximum values

for U and V (vertical and horizontal dashed lines in the figure), reducing the unit square to

a sub-square. Second, the mortality constraint (U + V ≥ ph(x)(1− pd(x + n))), represented

by the diagonal dashed line, reduces this sub-square further to a triangular region. This

triangular region, subject to the embeddability constraint described above, is the allowable

posterior region for sampling U and V .

Sampling can be made efficient, as shown in the figure, by computing the sub-sub-square

bounded by the minimum allowable values of U and V , given the known maximum values

and the mortality constraint. That is, when U = ph(x + n), V must be ph(x)(1 − pd(x +

n))− pu(x + n), and when V = pu(x + n), U must be ph(x)(1− pd(x + n))− pu(x + n). This

result implies that U and V can be drawn from uniform distributions as follows:

U ∼ U(ph(x)(1− pd(x + n))− pu(x + n) , ph(x + n))

V ∼ U(ph(x)(1− pd(x + n))− ph(x + n) , pu(x + n)),

with only draws that fall within the acceptable triangular region and meet the embeddability

constraint being accepted.

The entire transition probability matrix P(x) can be computed simply by conditioning

U , V , and the other cell values on the row probabilities. For example, phh(x) = U/ph(x),

phu(x) = V/ph(x), phd(x) = (ph(x)− (U + V ))/ph(x), etc., where we have switched notation

to double-subscript the transition probabilities between states over the age interval. To
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complete the construction of P(x) (x = α . . . ω) we must add a row vector, [0 0 1], to the

bottom of P(x) to make it a 3 × 3 matrix. This final row represents the probabilities of

transitioning from the “dead” starting state.

2.4 Generating multistate life tables

Generation of the life tables, given the discrete time P(x) for each age relies on basic life

table calculations. Again, these steps apply to each of the Gibbs samples of P(x), ∀x. First,

the radix for the life table can be computed by setting the diagonal of l(α) to [ph(α) pu(α)].

Next, the transition probability matrices must be converted into continuous time hazard

matrices, µ(x). Under a typical assumption that the force of transition is constant over an

age interval, P(x) = exp{−nµ(x)}; thus, µ(x) = −(1/n) ln(P(x)). ln(P(x)) can be obtained

via a series expansion or via Sylvester’s formula. We use Sylvester’s formula, because as

Singer and Spilerman (1976) note, Sylvester’s formula works even when the series expansion

for the logarithm fails to converge. Under Sylvester’s formula:

lnP =
3∑

i=1

log(λi)
∏
i 6=j

(P− λjI)

(λi − λj)

where λi is the ith eigenvalue of P.

Given µ(x), the remaining life table computations include the l(x) matrix and the L(x)

matrix for each age. Note that l(x) and L(x) are diagonal matrices, while l(x + n) and

L(x+n) are not; as we iterate the life table calculations across age, l(x+n) and L(x+n) must

be converted to diagonal matrices (see Schoen 1988). Under the constant forces assumption,

l(x + n) = l(x) exp{−nµ(x)}, where exp{−nµ(x)} = I +
∑∞

i=1((−n)iµ(x)i(x))/i! is the

series expansion representing the exponential function. In practice, the summation generally

requires fewer than 10 iterations to converge.

L(x) =
∫ x+n

x
l(x) can then be computed as L(x+n) = nl(x)

[
I +

∑∞
i=1((−n)iµi(x))/(i + 1)!

]
.

Finally, we can compute state expectancies matrices as e(x) = L(x)l(x)−1, and for the old-
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est age group, to close out the table, we can compute e(ω) = l(ω)µ(ω)−1. Given that we

have specified a parametric pattern for age dependence of health and mortality (linear in the

probit), we can carry out our life table calculations to any age. We generally extend our life

tables to age 100, although we may wish to limit the calculations only to the range of the

observed data.

The net result of this multi-step process is that we obtain distributions of multistate

life tables for each covariate profile we select. We can summarize these distributions of life

tables using basic summary statistics, but we can also perform statistical tests to compare

populations with different covariate profiles. We highlight this process in our empirical

example.

3 An Empirical Example

As a first test of the method, we used the 2002 NCHS mortality data discussed earlier coupled

with the 2002 NHIS data, created a nonparametric, dummy variable specification for age, and

used the linear method for computing person-years lived in each state, in order to compare

results of this new method with those obtained following Sullivan’s original method. The

posterior mean and standard deviation estimates of HLE, ULE, TLE, for the new method

were virtually identical to the estimates obtained via Sullivan’s method: The mean absolute

difference (MAD) between the two sets of estimates for HLE was .014 years; for ULE the

MAD was .006 years; for the standard error for HLE and ULE, the MAD was .001 years

(detailed results/tables available upon request).

The value of this new method would be limited if it only reproduced Sullivan estimates.

However, as discussed earlier, Sullivan’s method is limited in its ability to incorporate co-

variates. As an empirical example of this model that shows how the method overcomes this

limitation, we assess the extent to which race differences in HLE are explained by socioe-

conomic status differences between the two races. It is well known that blacks have lower
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TLE and that they experience poorer health than whites (see Lynch, Brown, and Harmsen

2003 for a review). One explanation for this disparity is that blacks, on average, have lower

socioeconomic status than whites, and it is this SES difference that drives the race difference

(Hayward et al. 2000). Recent research has attempted to determine the extent to which

SES differences account for race differences in both health and mortality (e.g., Hayward et

al. 2000), but research has been unable to determine the extent to which SES differences

account for race differences in HLE, primarily because of: (1) the lack of a method, such

as the one described here, that allows for both the inclusion of covariates in multistate life

table estimation and the construction of estimates that can be statistically compared, and

(2) the lack of data that can be dis/aggregated at a level necessary to address the question.

However, answering this question is important and provides a different type of answer than

one that considers health and mortality separately can provide.

As above, we use mortality data from the 2002 NCHS life table, disaggregated by age,

sex, and race (black vs. white), and we use health data from the 2002 NHIS. From the health

data file (n=10,659), we include age (50+, mean=65.42, sd=10.62), sex (41.8% male), race

(12.2% black), region (38.2% from the south), educational attainment (years of schooling,

x̄ = 12.6, s = 3.4), and household income. Income was measured as an ordinal variable; we

recode each value to the midpoint of the observed ordinal category (in thousands) (x̄ = 38.3,

s = 24.3). Our health outcome is dichotomous as described earlier.

In addressing this question, we first constructed the data as in section 2.1, by merging

the mortality probabilities from the vital statistics data disaggregated by age, sex, and

race, into the health data file. Next, we estimated the bivariate hazard model discussed in

section 2.2, using Gibbs sampling to generate 10,000 samples from the posterior density for

all regression parameters in the model. To reduce dependence between samples, we kept

every fifth sample, leaving us with 2,000 samples. We then discarded the first 1,000 draws

as the burn-in, retaining 1,000 samples for generating life tables. Although discarding so

many iterations is unnecessary here, given rapid convergence and mixing, the entire process
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of hazard model estimation and life table generation takes approximately 8 minutes (in R

for Windows on a laptop computer) and is therefore not costly. The posterior means and

standard deviations for the hazard model parameters from the Gibbs sampler were virtually

identical to the ML estimates and standard errors.

In the next step, we selected values of the covariates—sex, race, region, education, and

income—to allow us to determine the extent to which race differences in HLE and the

proportion of life remaining to be healthy at age 50 are attributable to SES differences. For

this step, we set sex=.5 and south=.5 (the midpoint between male and female and nonsouth

and south, respectively), but we generated separate sets of life tables for (1) blacks set to the

black means for education and income, (2) whites set to the white means for education and

income, and (3) blacks set to the white means for education and income. Thus, we obtained

a total of 3,000 life tables.

Figure 3 shows trace plots and histograms of e(50) that result from applying the life table

calculations to each of the Gibbs samples from the hazard model. The figure shows TLE

for whites and blacks, each set to their group means and blacks set to the white means for

education and income. The mean for e(50) for blacks, whether using black or white means

for SES is 26.19 years (s.d.=1.02), while the mean for whites is 30.36 years (s.d.=.92), a

gap of approximately four years. TLE for blacks does not vary based on the choice of SES,

because the mortality data contained no information on these covariates. However, healthy

life expectancy does vary. Black HLE is 17.48 years (s.d.=.76), and white HLE is 24.46

years (s.d.=.73). However, the gap narrows when black HLE is estimated setting SES for

blacks equal to the mean for whites: HLE=19.25 (s.d.=.81). We can determine the extent

to which the black-white difference in HLE is explained by SES differences between races by

computing:

% attributable to SES = 1− HLE(white | white SES)−HLE(black | white SES)

HLE(white | white SES)−HLE(black | black SES)
.
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Because this calculation can be performed for all 1000 Gibbs samples for HLE, we can obtain

a posterior mean and an empirical interval (e.g., 95%), for this quantity. This calculation

shows that 25.5% of the black-white difference is explained by SES differences, with an

empirical interval for this difference of [21.1% , 31.2%].

The large racial gap in HLE may simply reflect that whites have greater TLE. Thus,

a more important question may be whether the proportions of remaining life to be spent

healthy differ between blacks and whites and, if so, whether SES differences explain the

disparity. These proportions can be computed directly from the HLE and TLE measures

as HLE/TLE, yielding a distribution of them for blacks set at the black means for SES,

whites set at the white means for SES, and blacks set at the white means. Figure 4 shows

these three distributions. As the figure shows, whites can expect to spend approximately

80% of their remaining life healthy (mean=.806, s.d.=.004), while blacks can expect to spend

approximately 67% of their remaining life healthy (mean=.668, s.d.=014). The figure also

shows that, if blacks had comparable levels of SES, this proportion would increase from about

67% to about 74% (mean=.735, s.d.=.013). As above, we can generate a proportion of the

race difference attributable to SES differences; this proportion is 49.3% (s.d.=.0466). An

empirical interval for this proportion is [.411,.596]. Although this result shows that a sizeable

proportion of the racial disparity is attributable to SES disparity, the distributions for blacks

controlling on SES and whites do not overlap, indicating that a significant disparity remains

to be explained by other factors.

4 Conclusions

The method we develop in this paper constitutes a significant advance over Sullivan’s method

for estimation of state expectancies. To date, Sullivan’s method has been used extensively

but has been limited in its inability to incorporate covariates into the process of estimation

to produce estimates for highly-refined subpopulations. Our parametric, model-based ap-
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proach overcomes this limitation and allows the construction of interval estimates of state

expectancies useful for the statistical comparison necessary to answer important questions

concerning subpopulation differences using sample data. This advance has a cost, however.

The primary limitation of the method is that parametric specification of age dependence, as

well as parametric specification of the effects of other covariates necessarily introduces some

additional error into estimates, enlarging the width of interval estimates, because parametric

models of state expectancies simply do not fit as well as nonparametric approaches like Sul-

livan’s method. This problem can be resolved, to some extent, by using polynomial or other

functional forms for age and covariate dependence. One could also argue that a parametric

approach is less susceptible to idiosyncratic distortions present in any particular sample.

Nonetheless, further comparison of the results of parametric and nonparametric approaches

to life table generation is warranted.
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Table 1: Generic Three-State (Including Death) Sullivan Life Table

Basic Life Table Calculations Sullivan’s Additions

Age l(x) q(x) d(x) L(x) T (x) e(x) πh(x) Lh(x) Th(x) eh(x)

0 l(0) q(0) d(0) l(0)+l(1)
2

∑ω
a=0 L(a) T (0)

l(0) πh(0) L(0)πh(0)
∑ω

a=0 Lh(a) Th(0)
l(0)

1 l(1) q(1) d(1) l(1)+l(2)
2

∑ω
a=1 L(a) T (1)

l(1) πh(1) L(1)πh(1)
∑ω

a=1 Lh(a) Th(1)
l(1)

2 l(2) q(2) d(2) l(2)+l(3)
2

∑ω
a=2 L(a) T (2)

l(2) πh(2) L(2)πh(2)
∑ω

a=2 Lh(a) Th(2)
l(2)

...
...

...
...

...
...

...
...

...
...

ω l(ω) q(ω) l(ω) l(ω)m(ω)−1 L(ω) L(ω)
l(ω) πh(ω) L(ω)πh(ω)  Lh(ω) Lh(ω)

l(ω)

Note: l(x) is the number of persons alive at exact age x; q(x) are mortality probabilities between
age x and x + n, where n is the width of the age intervals in the data; d(x) are the number of
deaths that occur to l(x) between x and x + n; L(x) is the number of person years lived between
ages x and x + n by persons alive at exact age x (linear assumption is shown in table); T (x) is the
sum of L(x) from age x forward; e(x) is the expectation of life at age x and is equal to T (x)/l(x).
The latter five columns are Sullivan’s extension.
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Figure 1: Ecological Inference Set-up for Transition Probability Matrices by Age Interval
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Figure 2: Ecological Inference Sample Space for U and V.

22



0 200 400 600 800 1000

22
26

30
34

Gibbs Sample

B
la

ck
 T

LE
50

 | 
B

la
ck

 S
E

S

22 24 26 28 30 32 34

0.
0

0.
2

0.
4

Black TLE50 | Black SES

F
re

qu
en

cy

0 200 400 600 800 1000

22
26

30
34

Gibbs Sample

W
hi

te
 T

LE
50

 | 
W

hi
te

 S
E

S

22 24 26 28 30 32 34

0.
0

0.
2

0.
4

White TLE50 | White SES

F
re

qu
en

cy

0 200 400 600 800 1000

22
26

30
34

Gibbs Sample

B
la

ck
 T

LE
50

 | 
W

hi
te

 S
E

S

22 24 26 28 30 32 34

0.
0

0.
2

0.
4

Black TLE50 | White SES

F
re

qu
en

cy

Figure 3: Gibbs Samples and Histograms of Total Life Expectancy at 50 for Blacks and
Whites.
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