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Long Abstract 
 
 
Areal data such as census data of counties are widely used in population researches. 
However, the spatial dependence inherent in these data is often ignored by researchers, 
causing biases in all statistical inferences. Thus, models that consider spatial correlation 
are desirable. In this study, we applied two hierarchical Bayesian models that account for 
spatial correlation in the analysis of county population data. The conditionally 
autoregressive (CAR) model was used to deduct the dependence of population of age 0-
17 and age 65+ on the household income of 100 North Carolina counties. This model 
successfully accounted for spatial clustering effects. The multivariate CAR (MCAR) 
model was used to access the spatial correlation between two outcomes (the two 
population proportions). In some situations MCAR models tend to overweight the spatial 
correlation. Although caution in application should be exercised, MCAR models can be 
very useful in the analysis of multivariate areal data. 
  
 

Introduction 
 

Areal data are those data that represent characteristics of discrete areas such as 
counties and census tracts. Typically the set of areas are defined by geopolitical 
boundaries. Areal data widely used in population researches, as well as other fields such 
as public health, political science, and education. 

One key property associated with areal data can be stated in the paraphrased “first 
low of geography”: Everything is related to everything else, but near things are more 
related than far things”. However, this spatial dependence inherent in areal data is often 
ignored by researchers, partly due to their unawareness, and partly due to the lack of 
statistical tools that are able to address it. Nevertheless, this blind ignorance can cause 
biases in all statistical inferences using the data. Thus, models that consider spatial 
correlation are very desirable for areal data. 

In general, spatial models offer two types of benefit. The first considers the loss of 
information introduced by spatial correlation relative to independent samples of the same 
size. In this situation, incorporating the correlation into the model improves the accuracy 
of statistical inference. Another benefit of a spatial model derives from the view that 
spatial correlation itself is as an extra source of information. For example, when 
analyzing incidence counts of a rare disease, spatial correlation can be used to stabilize 
low counts in an area by “borrowing strength” from nearby areas. In both cases, the 
researcher recognizes that data came from neighboring areas are often more correlated 



than non-neighboring areas. This underlying correlation structure needed to be 
considered in order to obtain valid inferences. 

 

Methods 
 

We often want to study the relationship between a certain covariate and an 
outcome. Suppose we have n counties, each has an outcome yi, and we want to relate it to 
a county characteristic xi. The simplest way is to write down a linear regression model: 

iii xy εββ ++= 10 , 

where 0β is the intercept and 1β is the slope. The residue term iε is usually treated as 

being independent and identically distributed. Our goal is to modify the error term so that 
it accounts for the correlation between neighboring areas. 

We can construct a hierarchical model by splitting the error term into two terms: 

iii θφε += , 

where iφ  is the spatial random effect term and iθ  is the non-spatial random effect term. 

The non-spatial random effect term is normally distributed with zero mean: 
),0(N ~ 2
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The spatial random effect term iφ  is the essence of the spatial model. We begin to 
construct a spatial conditionally autoregressive (CAR) model by recognizing that being 
spatially correlated means a quantity arising from an area is dependent on those from 
neighboring areas. This concept can be formulated in terms of conditional distributions: 
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Where iY is the random variable of outcome of area i, Nbr∈jy  are the outcomes of 

neighboring areas, and coefficients ijb  represent the “strength” of the effect of area j to 

area i. 
In practice, the “neighbors” can be defined in many different ways, such as 

adjacency, distance, whether two areas are connected by main roads, similar 
socioeconomic status (SES), etc. In this study we define neighbors as those areas that are 
adjacent to the area in discussion. Also notice that the conditional distribution takes a 
normal form. This is an extension of the central limit theorem. Because there are a large 
number of possible pathways or mechanisms that an area can by affected by its 
neighbors, the distribution of the combined effect can take its asymptotic form of a 
normal distribution. 

The full joint distribution of the spatial random effect of all n areas does not have 
a closed form and is very difficult to compute by traditional statistical methods. However, 
it can be quite easily evaluated in the Bayesian framework using Markov chain Monte 
Carlo (MCMC) simulation, the now-standard method for computational Bayesian 
analysis. 

In the multivariate situation, we extend the univariate CAR to multivariate CAR 
(MCAR) by replacing the normal distribution in the conditional distribution above by a 

multivariate normal (MVN) distribution. The variance 2
spσ  is replaced by a variance-



covariance matrix Σ . Suppose we have two outcomes, A and B. Now the outcome A of 
an area is on condition of not only the outcome A but also outcome B of its neighboring 
areas. The computation steps is similar to those of CAR, though. 

 

Analysis, Results, and Discussion 
 

We illustrate our CAR and MCAR models using the proportion of young 
population (age 0-17) and old population (age 65+) of the 100 counties of the state of 
North Carolina as the outcomes, and these counties’ median household incomes as the 
covariate. These data were from the U.S. Census 2000. 
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Figure 1. Observed outcomes (proportions of population of young and old age groups) versus the 

covariate (median household income) 

 
 
 
 



Figure 1 shows the two outcomes versus the covariate. The trend is clear seen on 
this figure. In general, the higher the median household income, the less young and old 
population in a county. We used two separate CAR models to estimate the slopes for the 
two outcomes. The mean and 95% CI of the estimated slope for the young population is 
-3.8 (-5.9, -2.0), all per million dollars. The estimated slope for the old population is 
-2.9 (-5.0, -0.99). For both outcomes the null hypothesis is rejected. The proportion of 
young population has slightly stronger negative dependence on the median household 
income. This is consistent with Figure 1. 

We estimated the relative contribution to the total random effect from spatial 
random effect. It was estimated that spatial random effect accounted for 68% 
(95% CI: 61%, 75%) of the total random effect for the proportion of the young 
population, and 67% (59%, 73%) for the old population. For both outcomes the spatial 
random effect is more profound than non-spatial random effect. 

We used the MCAR model to evaluate both slopes in a single model. 
Unfortunately it yielded poor results: both slopes are close to zero. This can be explained 
by noting that MCAR put more weights on the spatial correlations, because it relates an 
outcome to not only itself but the other outcome of neighboring areas. This probably 
forced the MCAR model to absorb as much variations of outcomes into the spatial 
random effect as possible, and therefore overlooked the effect of the covariate. This 
suggests that caution should be exercised when using MCAR for inferences for individual 
outcomes. 

However, we found that the MCAR model is useful in assessing the correlation 
coefficients of two outcomes. By removing the regression term from the MCAR model 
but retain the spatial term, we are effectively “spatially smoothing” the outcome surfaces. 
The resulted correlation coefficient between the spatially smoothed outcomes is 0.94. For 
comparison, the correlation coefficient calculated from the observed data is 0.13.  The 
value of 0.94 after spatial smoothing is quite big compared to the value of 0.13 for the 
observed data. This is because the after-spatial-smoothing correlation coefficient is not a 
measure of the correlation between individual outcome (data points in Figure 1), but the 
two spatially smoothed trends (the two dashed lines in Figure 1). This suggests MCAR is 
effective in filtering out noises while retaining the underlying spatial trends and detecting 
the relationship between the trends of different outcomes. Therefore, MCAR can be very 
useful in the analysis of multivariate areal data. 


