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Long Abstract

Areal data such as census data of counties are widetyingopulation researches.
However, the spatial dependence inherent in thateis often ignored by researchers,
causing biases in all statistical inferences. Thusjels that consider spatial correlation
are desirable. In this study, we applied two highiemal Bayesian models that account for
spatial correlation in the analysis of county papioh data. The conditionally
autoregressive (CAR) model was used to deductepemtience of population of age 0-
17 and age 65+ on the household income of 100 Natblina counties. This model
successfully accounted for spatial clustering e$fethe multivariate CAR (MCAR)
model was used to access the spatial correlatitvvele& two outcomes (the two
population proportions). In some situations MCARd®is tend to overweight the spatial
correlation. Although caution in application shoblel exercised, MCAR models can be
very useful in the analysis of multivariate areatlad

Introduction

Areal data are those data that represent charactemstitiscrete areas such as
counties and census tracts. Typically the setedsare defined by geopolitical
boundaries. Areal data widely used in populatieeaeches, as well as other fields such
as public health, political science, and education.

One key property associated with areal data castated in the paraphrased “first
low of geography”: Everything is related to evergthelse, but near things are more
related than far things”. However, this spatialefggence inherent in areal data is often
ignored by researchers, partly due to their unames®, and partly due to the lack of
statistical tools that are able to address it. éedess, this blind ignorance can cause
biases in all statistical inferences using the .dBtas, models that consider spatial
correlation are very desirable for areal data.

In general, spatial models offer two types of b&n&he first considers the loss of
information introduced by spatial correlation relatto independent samples of the same
size. In this situation, incorporating the corriglatinto the model improves the accuracy
of statistical inference. Another benefit of a sglanhodel derives from the view that
spatial correlation itself is as an extra sourcmfafrmation. For example, when
analyzing incidence counts of a rare disease,aatirelation can be used to stabilize
low counts in an area by “borrowing strength” fragarby areas. In both cases, the
researcher recognizes that data came from neigitareas are often more correlated



than non-neighboring areas. This underlying coti@iastructure needed to be
considered in order to obtain valid inferences.

Methods

We often want to study the relationship betweenréat covariate and an
outcome. Suppose we haveounties, each has an outcoynend we want to relate it to
a county characteristig. The simplest way is to write down a linear regi@s model:

Yo =6t BX t &,
where g, is the intercept ang, is the slope. The residue tergnis usually treated as
being independent and identically distributed. @oal is to modify the error term so that
it accounts for the correlation between neighbodreps.

We can construct a hierarchical model by splittimg error term into two terms:

& =¢+6,
where ¢ is the spatial random effect term afdis the non-spatial random effect term.
The non-spatial random effect term is normallyribsited with zero mean:
6 ~N(O Ty ) -

The spatial random effect tergn is the essence of the spatial model. We begin to
construct a spatial conditionally autoregressivAREmodel by recognizing that being
spatially correlated means a quantity arising feomarea is dependent on those from
neighboring areas. This concept can be formulateerms of conditional distributions:

Y Yoo ~ N( ij Yi ’a-spz)’
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WhereY; is the random variable of outcome of ared|iy,, are the outcomes of
neighboring areas, and coefficiemfsrepresent the “strength” of the effect of area j t

area .

In practice, the “neighbors” can be defined in mdifferent ways, such as
adjacency, distance, whether two areas are corthbgtmain roads, similar
socioeconomic status (SES), etc. In this study &faed neighbors as those areas that are
adjacent to the area in discussion. Also noticettieconditional distribution takes a
normal form. This is an extension of the centmaititheorem. Because there are a large
number of possible pathways or mechanisms thatencan by affected by its
neighbors, the distribution of the combined efiem take its asymptotic form of a
normal distribution.

The full joint distribution of the spatial randorffext of all n areas does not have
a closed form and is very difficult to compute bgditional statistical methods. However,
it can be quite easily evaluated in the Bayesiaméwork using Markov chain Monte
Carlo (MCMC) simulation, the now-standard methoddomputational Bayesian
analysis.

In the multivariate situation, we extend the uniate CAR to multivariate CAR
(MCAR) by replacing the normal distribution in thenditional distribution above by a

multivariate normal (MVN) distribution. The variaancfspz is replaced by a variance-



covariance matrixz . Suppose we have two outcomes, A and B. Now theome A of
an area is on condition of not only the outcomeufdiso outcome B of its neighboring
areas. The computation steps is similar to thosgAdR, though.

Analysis, Results, and Discussion

We illustrate our CAR and MCAR models using thegamion of young
population (age 0-17) and old population (age &8-+the 100 counties of the state of
North Carolina as the outcomes, and these coumtiedian household incomes as the
covariate. These data were from the U.S. Censud.200
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Figure 1. Observed outcomes (proportions of population of young and old age groups) versusthe
covariate (median household income)



Figure 1 shows the two outcomes versus the coeafldte trend is clear seen on
this figure. In general, the higher the median leba$d income, the less young and old
population in a county. We used two separate CARatsoto estimate the slopes for the
two outcomes. The mean and 95% CI of the estimgltgze for the young population is
-3.8 (-5.9, -2.0), all per million dollars. The iesated slope for the old population is
-2.9 (-5.0, -0.99). For both outcomes the null Hiaesis is rejected. The proportion of
young population has slightly stronger negativeethelence on the median household
income. This is consistent with Figure 1.

We estimated the relative contribution to the tod@dom effect from spatial
random effect. It was estimated that spatial randéfect accounted for 68%

(95% CI: 61%, 75%) of the total random effect foe proportion of the young
population, and 67% (59%, 73%) for the old popolatiFor both outcomes the spatial
random effect is more profound than non-spatiatioam effect.

We used the MCAR model to evaluate both slopessingle model.
Unfortunately it yielded poor results: both slopes close to zero. This can be explained
by noting that MCAR put more weights on the spat@relations, because it relates an
outcome to not only itself but the other outcoma@fhboring areas. This probably
forced the MCAR model to absorb as much variatminsutcomes into the spatial
random effect as possible, and therefore overlottkeaffect of the covariate. This
suggests that caution should be exercised wheg MBAR for inferences for individual
outcomes.

However, we found that the MCAR model is usefuhgsessing the correlation
coefficients of two outcomes. By removing the resgien term from the MCAR model
but retain the spatial term, we are effectivelydisally smoothing” the outcome surfaces.
The resulted correlation coefficient between thetigfly smoothed outcomes is 0.94. For
comparison, the correlation coefficient calculdtedn the observed data is 0.13. The
value of 0.94 after spatial smoothing is quite dognpared to the value of 0.13 for the
observed data. This is because the after-spatiabtnmg correlation coefficient is not a
measure of the correlation between individual omeddata points in Figure 1), but the
two spatially smoothed trends (the two dashed linésgure 1). This suggests MCAR is
effective in filtering out noises while retaininget underlying spatial trends and detecting
the relationship between the trends of differertomes. Therefore, MCAR can be very
useful in the analysis of multivariate areal data.



