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Abstract 

 In this article, we present and develop a propensity score method to reduce bias in 

diagnostic tests of health measures on actual disease diagnosis.  The propensity score 

serves as a distributional balance of covariates and is predicted by the binomial logistic 

regression with disease diagnosis as the response variable and a number of covariates as 

predictor variables.  We develop two multivariate regression models to validate health 

measures.  For health measures that are dichotomized, we establish a binomial logistic 

regression model to estimate sensitivity, specificity, and the likelihood ratio.  For health 

measures involving more than two levels, we use the multinomial logit regression to 

estimate the probability of a true positive result, the probability of a false positive result, 

and the likelihood ratio at each measurement level.  Our empirical examples demonstrate 

that without considering an individual’s demographic, socioeconomic and other relevant 

characteristics, results from diagnostic tests of health measures can be biased and 

misleading. 
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Introduction 

 The propensity score method is a technique that has been widely employed in 

randomized controlled experiments to reduce biases in comparing effects between 

conditions (Brookhart et al., 2006; D’Agostino, 1998; Robins and Mark, 1992; 

Rosenbaum, 1983; Rosenbaum and Rubin, 1984).  The score serves as a distributional 

balance of covariates in examining the effects of a given experimental intervention, 

thereby adjusting for potential confounding factors (Rosenbaum, 1983).  If the propensity 

score is used as a covariate in a multivariate regression model, the result is a relatively 

unbiased association between the treatment factor and the outcome variable. 

While it is commonly used in experimental studies, the propensity score method 

can also be effective in performing empirical analyses in other domains.  In experimental 

studies, the confounding factors influence the relationship between treatment and 

outcome; consequently, the propensity score is used to adjust for such biases.  Similarly, 

confounding factors may differentially affect results from another testing variable that is 

assessed with a single binary measure, thereby resulting in misleading and biased 

conclusions.  We can borrow the propensity score method from these experimental 

studies and employ it to reduce biases in assessing the validity of such variables.  There 

are many examples, among which the statistical validation of health measures is probably 

the most prominent. 

A variety of health measures exist to assess the prevalence and severity of 

illnesses, and researchers commonly cross disciplines and use statistical techniques to 

examine the accuracy and validity of their measures.  Sensitivity, specificity, positive or 

negative predictive values, receiver operating characteristic plots, and the likelihood ratio 
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(the ratio of the probability of true positives over the probability of false positives) are 

examples of such techniques used to validate measures (Altman and Bland, 1994a; 

Altman and Bland, 1994b; Altman and Bland, 1994c; Deeks and Altman, 2004; Grimes 

and Schulz, 2005; Simel, Samsa, and Matchar, 1991).  Without careful consideration of 

population heterogeneity, however, testing results from a health measure can be 

misleading, as strong differences in individual characteristics and personal traits can 

confound the relationship between a specific health measurement and the true medical 

condition.  Despite such threats for the quality of testing outcomes, it is surprising to note 

that little effort has been made to understand and explore potential biases in applying 

these statistical techniques. 

 In this article, we examine the relationship between a given health measure and 

the underlying true medical condition by constructing a propensity score model to reduce 

potential biases in performing diagnostic tests.  We demonstrate how the propensity score 

mediates/moderates the detection of a specific disease using a screening measure versus 

the gold standard diagnostic measure.  The screening measure can produce a binomial or 

an ordinal scaling of illness severity (a multilevel outcome).  Accordingly, we derive two 

propensity score models using a binomial and a multilevel approach. 

 

Review of Basic Diagnostic Testing Techniques 

 In this study, we concentrate on sensitivity, specificity and likelihood ratios given 

their extensive application and popularity.  Other diagnostic testing techniques, such as 

positive or negative predictive value and receiver operating characteristic plots, can be 

viewed as their extensions. 
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Technically, sensitivity and specificity are just two conditional probabilities 

linked to a given health measure for a specific medical or mental health condition.  In the 

context of health measures, sensitivity is the probability of positive measuring results 

given positive medical diagnosis, whereas specificity is defined as the probability of 

negative results with negative medical diagnosis.  Each of the two diagnostic indicators 

only reflects a unilateral dimension in terms of an effective assessment of a given health 

measure; and the sole dependence on any one can lead to misconception and 

misjudgment.  Statisticians have used likelihood ratios to summarize the diagnostic 

accuracy, serving as a more balanced tool to characterize the behavior of diagnostic tests 

(Deeks and Altman, 2006; Simel, Samsa and Matchar, 1991). 

For dichotomized measuring results classified by medical diagnosis (a 2 × 2 

contingency table), the conventional likelihood ratio approach is to combine information 

of both sensitivity and specificity for providing complete information obtained from a 

specific health measure.  The positive likelihood ratio, denoted by LR+, represents 

changes in the likelihood of a specific disease given a positive measuring result, whereas 

the negative likelihood ratio (LR-) indicates changes in the likelihood of a specific 

diagnosed disease given a negative result.  For a diagnosed disease, sensitivity and 

specificity can be expressed as the probability of true positive measuring results and the 

probability of true negative measuring results.  Similarly, (1 – specificity) is simply the 

probability of false positives referring to that disease while (1 – sensitivity) is the 

probability of false negatives.  Hence, LR+ can be expressed as the ratio of the 

probability of true positives over the probability of false positives, whereas LR- as the 

ratio of the probability of false negatives over the probability of true negatives. 
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 When a health measure is composed of multiple scaling levels, a set of likelihood 

ratios need to be derived, termed the multilevel likelihood ratio approach (Deeks and 

Altman, 2004; Grimes and Schulz, 2005; Simel, Samsa, and Matchar, 1991).  

Empirically, a multilevel likelihood ratio is calculated as the proportion of diagnosed 

patients with positive measuring results at a given level (the probability of true positives) 

divided by the proportion of non-diseased patients with the same measuring result (the 

probability of false positives). 

 

Creation of a Propensity Score 

 In conventional experimental studies, the propensity score is defined as the 

conditional probability of assignment to a given treatment given an individual’s 

demographic, socioeconomic and other theoretically related characteristics.  This score 

has been used to balance the differences in personal traits and their confounding 

influences on the treatment’s effects while evaluating the association between conditions.  

Statistically, it can be estimated either by a logistic or by a probit (the standard normal 

cumulative distribution function) model, with the probability of being selected in the 

treatment group used as the response variable and the selected covariates as the 

independent. 

As potential confounders, variables predicting the propensity score can be risk 

factors on both the testing result factor and the treatment variable.  Empirically, the 

asymptotic variance of an estimator is often decreased as the number of theoretically 

related parameters in the prediction model is increased (Brookhart et al., 2006; Robins 

and Mark, 1992).  When both treatment (a dichotomous factor) and the propensity score 
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(a continuous factor) act together as independent variables in a statistical model 

predicting the level of a given medical or another indicator, the potential confounding 

effects of individual characteristics can be coarsely controlled.  Thus the generation of 

unbiased estimates of the treatment’s effects is secured. 

In the context of diagnostic tests on health measures, the propensity score is 

defined as the conditional probability of being diagnosed with a specific disease given 

values of covariates.  It is used to balance differences in potential confounding factors 

when assessing the quality of a specific health measure.  Statistically, we first define a 

dichotomous variable δi for observation i (i = 1,2,….., n), given by 




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n.1,2,.....,  i     negative, is disease for the diagnosis if    0

positive is diseasegiven  afor  diagnosis if     1
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Assuming the underlying health measure variable (1 = positive, 0 = negative) to be Zi and 

Xi to be the propensity score, the probability of a true positive test and the probability of 

a false positive test can be expressed as 
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where true

iP  and false

iP  indicate, respectively, the probability of true positives and the 

probability of false positives for subject i.  And X, the likelihood of being diagnosed with 

the disease, is used as the propensity score, a combination variable reflecting the 

information for a vector of confounders.  Since the propensity score is included in this 

model, the effect of the diagnosis is not attributable to the measured confounders, thus 

adjusting for possible biases in assessing the underlying health measure. 
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Propensity Score Approach for 2 × 2 Tables 

 If the outcome of a given health measure is dichotomized, the probability of a 

positive test is the response variable under assessment.  Accordingly, the status of disease 

diagnosis (yes or no) is the explanatory variable to determine whether a positive test 

result is true or false.  We can use a link function between the two to predict the 

probability of true positives or of the false positives, and eventually deriving a likelihood 

ratio.  In constructing this link function, the propensity score is used as a control variable, 

predicted by a set of selected individual demographic, socioeconomic and other relevant 

variables. 

 We establish a logistic regression model to estimate the probability of true 

positives, the probability of false positives, and the likelihood ratios plus and minus, 

adjusting for potential confounding factors.  Letting Ppos be the probability of positive 

measuring results, we specify the following logit model, 
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where (1 - Ppos) is the probability of negative results, α is the intercept for the log odds, 

and β1 and β2 are regression coefficients for the dichotomous variable actual disease (1 = 

yes, 0 = no) and the propensity score, denoted by X.  We employ the maximum 

likelihood approach to estimate the three parameters contained in the above model. 

The probability of positive results is the probability of true positives if the disease 

variable is 1, and the probability of negative results is the probability of true negatives if 

the disease variable is 0.  Hence, a number of regular diagnostic testing indicators can be 

estimated from transforming this logit model and inserting certain values of the 

independent variables, given by 
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where X  is the mean of the propensity score serving as a standardized adjustment for 

possible biases in the probability estimates generated from differences in observed 

individual characteristics.  As defined, the probability of true positives and the probability 

of true negatives are simply sensitivity and specificity, respectively.  The likelihood ratios 

plus and minus can then be estimated, given by 
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 As the propensity score is set at sample mean for those diagnosed with the disease 

and those without, the estimates of the likelihood ratios plus and minus are coarsely 

independent of differences in covariates between the two groups. 

 

Propensity Score Method for Multilevel Tables 

 If the test results involve R levels (R > 2), the dependent variable in the prediction 

model includes R competing probabilities of test results: P0 (the probability at the lowest 
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level, P1 (the probability at the second lowest level), ……, and PR-1 (the probability at the 

highest level).   

We use the multinomial logit regression model to estimate the log odds of R - 1 

contrasts, log(P1/ P0), log(P2/ P0), ……, and log(PR-1/ P0), defining P0, the probability of 

positive results at the lowest level, as the baseline probability.  The estimation of P0 

depends on the estimates for the probabilities of the other measuring results given the 

condition that a given set of probabilities must sum to unity.  Associated with a specific 

disease and the propensity score, the basic multinomial logit model in this setting is 

defined by 
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where α’s are the intercepts for (R – 1) log odds, β’s are regression coefficients for the 

dichotomous variable actual disease (1 = yes, 0 = no) and the propensity score, X, 

respectively.  After a series of equation transformation (the detailed procedure is 

available upon request), probability distribution of multiple health measures can be 

expressed as 
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We know that when the actual disease variable is 1, the P’s are probabilities of 

true positives; similarly, when the disease variable is 0, the P’s are probabilities of false 

positives.  Hence, by inserting disease values (0 or 1) and the standardized propensity 

scores, we can calculate a set of probabilities for true positives or a set of probabilities for 

false positives adjusting for possible biases in probability estimates generated from 

differences in observed individual characteristics.  For analytic convenience, we use 

sample means of the propensity scores to replace X, noted by X  and defined as the mean 

conditional probability as predicted by subjects’ demographic, socioeconomic and other 

relevant variables.  Specifically, a set of probabilities for true positives are given by 
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Similarly, the probabilities of false positives can be estimated as 
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Given these probability estimates, the multilevel likelihood ratios can be readily 

estimated by R pairs of probabilities, true positives over false positives, given by 
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 The likelihood ratio of the baseline measure, LR0, serves as the ratio of two 

residual probabilities, given by 
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 It is suggested that a subset of the covariates predicting the propensity score 

should also be used in the regression adjustment (D’Agostino, 1998).  Prior studies have 

found that in specification of a propensity score model one should include all variables 

theoretically related to the outcome, regardless of whether they are related to the 

exposure or treatment (in this case, health measures) (Brookhart et al., 2006; Rubin, 

2004).  Therefore, some covariates significantly predicting the test results should be 

considered in executing the aforementioned propensity score models.  Since addition or 

exclusion of predictor variables can cause severe variation in covariance, caution should 

apply in selecting control variables in the multivariate analytic model. 

 

Multivariate Standard Errors and Confidence Intervals 

 The precise derivation of standard errors and confidence intervals for the binary 

or multivariate likelihood ratios, obtained by the logistic regression modeling, is very 

complex and tedious because variations in a set of probabilities are a function of multiple 
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factors.  A coarse approximation is to randomly draw, with replacement, 30 or more sub-

samples (400 or 500 cases, depending on the total sample size of a given dataset) from a 

large sample, and then calculate sample estimates of standard errors and confidence 

intervals from approximately 30 sample estimates.   

 

Application 

 We present an empirical example to demonstrate the statistical techniques 

developed in the present research.  In particular, we seek to show how the propensity 

score can influence results of diagnostic tests on the prediction power of five bodily pains 

in terms of somatic disorders among American adults. 

 

Sample, Data and Methods 

 We use data from the Epidemiologic Catchment Areas Study (ECA), a nationally 

representative investigation conducted by National Institute of Mental Health in the mid-

1980s.  The ECA study and its methods are extensively described in other publications 

(Eaton et al., 1984; Regier et al., 1984; Robins and Regier, 1991).  In brief, the ECA 

study was a collaborative research effort to determine the epidemiology of specific 

mental disorders in the United States and associated utilization of health services.  The 

study was conducted in five geographic regions of the United States, including the New 

Haven (Conn.), Baltimore, St. Louis, Durham (N.C.), and Los Angeles areas.  About 

3,000 households and 300 institutionalized individuals were targeted for interviews at 

each site.  The present research uses the cross-sectional data of the original 18,571 

respondents at the baseline survey, excluding institutionalized individuals. 
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 We measure somatic disorders by a dichotomous variable (“yes” = 1; “no” = 0), 

using the criterion definition developed by Escobar and colleagues (1989) that is 

characterized by four or more unexplained physical symptoms among men or six or more 

symptoms by women.  Unexplained physical symptoms were determined using a highly 

structured interview that polled patients on 37 different physical symptoms encompassing 

a wide range of body regions and systems (Robins et al., 1981; Swartz et al., 1991).  

Table 1 presents the distribution of ECA Wave I respondents by the number of bodily 

pains, classified by status of somatic disorders. 

<Table 1 about here> 

 We use eight covariates to generate an individual’s propensity score in the 

multivariate analysis for balancing differences in individual characteristics and their 

potential confounding effects.  Specifically, we consider seven demographic and 

socioeconomic variables (age, gender, educational attainment, ethnicity, marital status, 

veteran status, and socioeconomic score), and one health factor (disability payment).  

Table 2 presents group comparison of means (or proportions), standard deviations, and 

two-sample t-statistics for nine predictor variables (ethnicity is specified by two 

dichotomous variables), classified by status of somatic disorders (yes or no). 

<Table 2 about here> 

 We apply both the conventional approach and the propensity score method to 

derive two sets of diagnostic tests on the number of five bodily pains predicting 

diagnosed somatic disorder.  Specifically, we first dichotomize five bodily pains into two 

categories, zero pain versus any pain, from which we calculate sensitivity, specificity, 

likelihood ratio plus and likelihood ratio minus from both the descriptive approach and 
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the binomial logistic regression.  Then we group the patient’s bodily pains into three 

categories, 0 – 1 pain, 2 – 3 pains, and 4 – 5 pains to estimate likelihood ratios at three 

levels.  In addition to the conventional multilevel approach, we employ the multinomial 

logic model to estimate the propensity score multilevel model, with the probability of 

having 0-1 pain being zero serving as the baseline probability.  Specifically, defining P1, 

P2 and P3 as the probabilities of three bodily pain levels, we examine log(P2/P1) and 

log(P3/P1) as linear functions of somatic disorder, the propensity score and some selected 

covariates.  From the eight covariates predicting the propensity score, we select several 

control variables according to our statistical assessment, including age, gender, ethnicity 

and disability payment in the propensity model, together with status of somatic disorder 

and the propensity score. 

 We use the formulas recommended by Simel and associates (1991) to calculate 

the standard errors and confidence intervals for the conventional diagnostic tests.  In 

terms of the propensity score models involving multiple explanatory variables, we 

perform the bootstrap re-sampling procedure (SAS/STAT 9.1, 2004) to draw 30 simple 

random samples with replacement, each containing 600 cases, from which we estimate 

the approximate standard errors and confidence intervals. 

 

Analytic Results 

 Table 3 presents the results of the binomial logit model predicting the propensity 

score.  Educational attainment is significantly and inversely associated with the 

probability of having somatic disorder, whereas women and blacks are significantly more 

likely to have somatization, other things equal.  The effects of other covariates are not 
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statistically significant.  The estimate of mean propensity score is 0.0481, indicating that 

about 5 percent of American adults is diagnosed with somatic disorder.  Using the results 

presented in Table 3, we create the propensity score for each individual according to his 

or her values of the eleven covariates and then use it as a new covariate in the propensity 

score models. 

<Table 3 about here> 

 Table 4 demonstrates the results for two sets of diagnostic tests on dichotomized 

bodily pains.  The upper panel of the table showed sensitivity, specificity, likelihood ratio 

plus and likelihood minus calculated by the conventional approach, while the second 

panel demonstrates results of the same diagnostic indicators derived from the propensity 

score model.  There are no distinct differences between the two sets of estimates, with or 

without the effects of individuals’ covariates.  For example, by including the propensity 

score and other control variables in the model, the value of specificity (the probability of 

true negatives) is 0.5447 compared to 0.5466 estimated from the conventional approach.  

As a result, the likelihood ratios plus and minus also remain relatively unchanged.  As the 

likelihood ratio plus is below two with both approaches, the dichotomization of bodily 

pains in measuring an adult’s status of somatic disorder is not efficient. 

<Table 4 about here> 

 Table 5 presents two sets of likelihood ratios for three bodily pain levels, derived 

from, respectively, the conventional descriptive approach and the multinomial logit 

regression.  In estimating the three population-based likelihood ratios, we fix values of 

the propensity score and other control variables as their sample means, so that the 

likelihood ratios can be derived adjusting for differences in covariates between those 
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diagnosed with somatization and those without.  The three likelihood ratios, estimated 

from the multinomial logit model, are 3.0101, 1.5592 and 0.2486, somewhat deviant from 

the sample figures, which are, respectively, 2.7466, 1.5169 and 0.2548.  As the variable 

somatic disorder has very strong impact on the two logits (2.2039 and 1.3803; 

statistically significant at α = 0.05), not presented here, the probability of true positives 

and the probability of false positives are significantly different, thus highlighting the 

statistical reliability of the likelihood ratios.   

Although we consider multiple factors in estimating the multivariate likelihood 

ratios, the confidence intervals for such ratios are not necessarily wider than those 

obtained from the conventional approaches, as evidenced in the present research. 

 

Discussion 

 This study introduces a multivariate propensity score method to reduce biases in 

performing diagnostic tests on health measures.  Specifically, we adjust differences in 

individual characteristics and personal traits by standardizing the propensity score in the 

multivariate regression model, so that sub-classification or matching on the propensity 

score is not required thereby avoiding the potential “residual confounding” (Robins and 

Mark, 1992).  As a consequence, the diagnostic tests on health measures, as associated 

with a given disease, can be performed with much adequacy and statistical confidence. 

One might question the use of a single combination factor to control the 

confounding effects of multiple factors.  The concern may come from the fact that 

because the propensity score is predicted by a number of covariates, researchers can 

directly use those explanatory variables in the model as controls thereby deriving 
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unbiased diagnostic tests.  We argue, however, that in presence of a large number of 

covariates in a statistical model, the existence of endogeneity can result in statistical 

inefficiency in deriving the effects of covariates, including that of treatment, exposure or, 

in this context, diagnosis factor.  Regression models involving a large number of 

potential confounding factors as independent variables often derive imprecise estimates 

of the main effect of the variable in assessment, resulting in wide confidence intervals 

and high p values for the main effect (Sonis, 2006).  Although it often absorbs more 

information for the prediction of the dependent variable, a model consisting of all 

covariates cannot reflect the true set of the influences generated by covariates on the 

stochastic processes (Liu, 2000). 

A simplified model using a propensity score and a subset of selected covariates, 

combines strengths inherent in both the prediction model and the model excluding 

confounding factors.  Moreover, sample sizes for experimental data are usually fairly 

small, and using a large number of covariates in a statistical model is not always realistic.  

Very often researchers are not interested in causal linkages of confounding factors, and a 

combination factor like the propensity score can well serve their purposes as controls.  In 

spite of these advantages, we should bear in mind that inclusion of the propensity score in 

diagnostic tests can substantially reduce biases in diagnostic tests, but by no means will it 

completely eliminate deviations from true stochastic processes of a health event.  
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Table 1.  Percentage Distribution of ECA Respondents by Number of Pains, 

 

Classified by Status of Somatic Disorder (Sample Size = 10,155) 

 

 

Number of Somatic Disorder 

Pains No Yes 

   

0 26.95% 2.65% 

1 27.71 11.28 

2 20.16 21.58 

3 11.11 25.86 

4 10.20 24.81 

5 3.86 13.83 

   

Chi-square 526.70
**

 

   

Sample Size 9,707 448 

   

 

**
 P < 0.01
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